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Abstract—Communication, i.e., moving data between levels
of a memory hierarchy or between processors over a network,
is much more expensive (in time or energy) than arithmetic.
There has thus been a recent focus on designing algorithms
that minimize communication and, when possible, attain lower
bounds on the total number of reads and writes. However, most
previous work does not distinguish between the costs of reads
and writes. Writes can be much more expensive than reads in
some current and emerging storage devices such as nonvolatile
memories.

This motivates us to ask whether there are lower bounds on
the number of writes that certain algorithms must perform, and
whether these bounds are asymptotically smaller than bounds
on the sum of reads and writes together. When these smaller
lower bounds exist, we then ask when they are attainable;
we call such algorithms “write-avoiding” (WA), to distinguish
them from “communication-avoiding” (CA) algorithms, which
only minimize the sum of reads and writes. We identify a
number of cases in linear algebra and direct N-body methods
where known CA algorithms are also WA (some are and
some aren’t). We also identify classes of algorithms, including
Strassen’s matrix multiplication, Cooley-Tukey FFT, and cache
oblivious algorithms for classical linear algebra, where a WA
algorithm cannot exist: the number of writes is unavoidably
within a constant factor of the total number of reads and
writes. We explore the interaction of WA algorithms with
cache replacement policies and argue that the Least Recently
Used policy works well with the WA algorithms in this paper.
We provide empirical hardware counter measurements from
Intel’s Nehalem-EX microarchitecture to validate our theory.
In the parallel case, for classical linear algebra, we show that
it is impossible to attain lower bounds both on interprocessor
communication and on writes to local memory, but either one
is attainable by itself. Finally, we discuss WA algorithms for
sparse iterative linear algebra.

I. INTRODUCTION

The most expensive operation performed by current com-
puters (measured in time or energy) is not arithmetic but
communication, i.e., moving data, either between levels of
a memory hierarchy or between processors over a network.
Furthermore, technological trends are making the gap in

costs between arithmetic and communication grow over time
[2], [3]. With this motivation, there has been much recent
work [4], [5] designing new algorithms that communicate
much less than their predecessors, ideally achieving lower
bounds on the total number of loads and stores performed.
We call these algorithms communication-avoiding (CA). To
be clear, while some CA algorithms are new, others are in
fact new schedules—order of instructions—of known algo-
rithms. With some overloading of notation, we sometimes
also refer to these CA schedules as CA algorithms. There
has also been considerable work on proving lower bounds
on the amount of communication required for a problem
(e.g., comparison sorting [6]) and, where such bounds are
difficult to prove, the minimum amount of communication
required by any valid schedule of an algorithm (e.g., FFT [7],
numerical linear algebra [4], [8], [9], [10]). We refer to these
as communication lower bounds.

Most of this prior work does not distinguish between
loads and stores, i.e., between reads and writes to a partic-
ular memory unit. But in fact there are some current and
emerging nonvolatile memory technologies (NVM) [11]
where writes can be much more expensive (in time and
energy) than reads. NVM technologies are being considered
for scientific applications on extreme scale computers [12]
and for cluster computing platforms [13], in addition to
commodity computers. One example of nonvolatile memory
(NVM) is Phase Change Memory [11], where, e.g., a write
is 15 times slower than a read both in terms of latency and
bandwidth [14] and consumes 10 times as much energy [15].
Another technology called CBRAM uses significantly more
energy for writes (1pJ) than reads (50fJ) [16], [17]. Writes
to NVM can also be less reliable than reads, require multiple
attempts for success, and can cause device wear out [18],
[19]. Motivated by this, work in [20], [21]—and references
therein—attempts to reduce the number of writes to NVM.

This motivates us to first refine prior work on communica-
tion lower bounds of algorithms which did not distinguish



Store 

Slow 

Fast 

 
Pr 

 
Load 

W

W

R

R

Fast 

 
Pr 

 

Slow 
Loads & 
Stores 

NVM 

Network 

NVM NVM 

(a) Symmetric model for 
     sequential algorithms  

(b) Asymmetric model for 
     accounting reads/writes  
     in sequential algorithms  
  

(c) Distributed memory model with NVM disks on each node 
      for parallel algorithms. Interprocessor communication occurs 
      between second lowest level of the memories of each node. 

Figure 1: Memory models for sequential and parallel algorithms.

between loads and stores (Fig. 1(a)) to derive new lower
bounds on writes to different levels of a memory hierarchy.
For example, in a 2-level memory model with a small, fast
memory and a large, slow memory, we want to distinguish
a load, which reads from slow memory and writes to fast
memory, from a store, which reads from fast memory and
writes to slow memory (Fig. 1(b)). When these new lower
bounds on writes are asymptotically smaller than the previ-
ous bounds on the total number of loads and stores, we ask
whether there are algorithms that attain them. We call such
algorithms, that both minimize the total number of loads
and stores (i.e., are CA), and also do asymptotically fewer
writes than reads, write-avoiding (WA). In this paper, we
identify several classes of problems where either sequential
or parallel WA algorithms exist, or provably cannot.

Contribution: We first consider sequential algorithms
with communication within a memory hierarchy, and then
parallel algorithms with communication over a network. To
analyze sequential algorithms, we start with the widely used
two-level memory hierarchy [6], [22], [23] with a “fast”
memory closer to the processor and a “slow” memory further
away, and refine the cost model to separate writes from
reads. Whereas previous models analyze the total amount of
data movement between the memory levels required by the
sequence of instructions in the algorithm, the refinement we
present in Section II counts, for each variable, the number of
writes to the slow and fast memories (and to each level in a
multi-level hierarchy, in the technical report [1]). Proposition
1 states that the number of writes to fast memory is at least
half the number of loads and stores, thus ruling out the
possibility of any algorithm (or schedule) avoiding writes
to the fast memory.

To understand which algorithms have schedules that avoid
writes to the slow memory, in Section III, we look to
their representation as a CDAG — the computation directed
acyclic graph with a vertex for each input or computed result
and directed edges for dependencies. Theorem 1 states that
if an algorithm has constant factor reuse, i.e., the outdegree
of the CDAG is bounded by a constant, and the inputs are
not reused too many times, then again the number of writes
by any schedule of the algorithm (i.e., any traversal of the
algorithm’s CDAG) to slow memory is at least a constant
factor of the total number of loads and stores. Thus, “fast
algorithms” which have bounded reuse, e.g., Cooley-Tukey
FFT and Strassen’s matrix multiplication, cannot be WA.

This leaves us with algorithms with CDAGs that have

a large degree of reuse such as those in classical direct
linear algebra and N -body methods. In Section IV, we build
upon the WA schedule for classical matrix multiplication
(MM) in [20] to construct WA schedules for triangular
solves and Cholesky factorization. It is known that on a
two-level memory hierarchy with fast memory of size M ,
any schedule for multiplying two n × n matrices requires
moving at least Ω(n3/

√
M) words between slow and fast

memories [7]. The WA schedule in Algorithm 1 is a special
case of a CA schedule that orders the execution of the blocks
so that only n2 words are written to the slow memory — no
more than the size of the output. Similarly, the WA schedules
we present for triangular solve, Cholesky factorization, and
the direct N -body algorithm cause no more writes to the
slow memory than the size of the output.

Dealing with multiple levels of memory hierarchy without
needing to know the number of levels or their sizes would
obviously be convenient, and many such cache-oblivious
(CO) CA schedules and algorithms have been invented [23],
[5]. It is natural to ask if write-avoiding, cache-oblivious
(WACO) algorithms exist. Theorem 2 and Corollary 3 in
Section V prove a negative result: for a large class of
algorithms, including most direct linear algebra for dense
or sparse matrices, and some graph-theoretic algorithms, no
WACO schedule can exist, i.e., the number of writes to slow
memory is proportional to the number of reads.

The WA schedules we present use explicit movement of
data between the levels of the memory hierarchy. However
in most cases, architectures only allow the programmer to
address data by virtual memory address, and the hardware
cache (replacement) policy determines the mapping of the
address to physical locations and thus dictates reads and
writes. In Section VI, we consider the interaction of the WA
schedules in Section IV with cache replacement policies.
Propositions 2 and 3 argue that the Least Recently Used
(LRU) policy can replace the algorithms’ explicit data move-
ments, preserving WA properties. We also provide empirical
hardware counter measurements of cache evictions and fills
on an Intel Nehalem-EX machine (which uses an LRU-like
policy) that match our claims.

Section VII discusses the parallel homogeneous case
(Fig. 1(c)), particularly the effect of combining CA and
WA algorithms, and the introduction of NVM as the largest
level in the memory hierarchy. We consider three scenarios:
without NVM (Model 1 in Section VII), with NVM and data
fits in DRAM (Model 2.1 in Section VII), and with NVM
but data does not fit in DRAM (Model 2.2 in Section VII).
While the CA-WA algorithm alone seems unlikely to be
beneficial in the first scenario, using NVM can be more
advantageous in the second scenario, depending on algo-
rithm and hardware parameters. In the third scenario where
we must use NVM, we prove that it is impossible to attain
both lower bounds on interprocessor communication and on
writes to NVM. We then present two algorithms for matrix



multiplication, each of which attains one of these lower
bounds. The technical report [1] also presents extensions
of these algorithms to LU factorization without pivoting.

In Section VIII, we consider Krylov subspace methods
(KSMs). We show that a known optimization for minimizing
communication in KSMs is more generally applicable in the
context of minimizing just writes. We also exhibit a family
of machine and problem parameters where this optimization
asymptotically reduces the number of writes at the cost of
doubling the numbers of reads and arithmetic operations.

Related work: The most relevant prior work on this
topic is that of Blelloch et al. [20] which proposes “write-
efficient” algorithms in the asymmetric PRAM, External
Memory, and Ideal Cache models, all designed to model
machines with non-volatile storage. Most of their algorithms,
except MM, exhibit a tradeoff between “reads” and “writes”;
to decrease the number of writes, a greater number of
reads than in the optimal algorithm must be performed. For
example, in their asymmetric external memory model, they
present a sorting algorithm that does (k+1)

⌈
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B

⌉ ⌈
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B
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size M + o(M) and block size B. The parameter k can
be tuned based on the extent of asymmetry between the
cost of reads and writes. Our algorithms do not exhibit such
tradeoffs; we achieve asymptotic reduction in writes without
asymptotically increasing the number of reads. Their cache-
oblivious algorithms are oblivious to the cache size, but not
the parameter k. Further, while they claim to present a cache-
oblivious algorithm for matrix multiplication in Theorem
5.3, the number of writes is not optimal (i.e. more than
Ω(n2)) and the bound is weaker for most input sizes except
those that are of the form ki ·

√
M for some integer i. They

also present a modified LRU cache replacement policy to
support their asymmetric ideal cache model. The unmodified
LRU policy works well for our algorithms, but may not
necessarily extend to all algorithms.

There has been much work on adapting algorithms, data-
structures, and file systems for Flash memories [24]. The
considerations there are slightly different there than in the
newer NVM technologies. Namely, writes in a NAND Flash
device are done in large blocks, and smaller writes must be
aggregated at the algorithm or OS level for performance
and durability [25]. On the other hand, NVMs are byte-
addressable or have small block sizes [12]. Wear-leveling
for Flash memories is another well studied issue [26], [27],
which we do not address as newer NVM technologies are
more durable than Flash devices and hardware techniques
for doing this have been proposed [28]. Memory-mapped
persistent data structures that provide transactional semantics
for fast byte-addressable memories like NVM have been
studied and demonstrated to perform well [29], although this
work does not analyze performance for specific algorithms.

II. MEMORY MODEL AND LOWER BOUNDS

We consider a two-level memory hierarchy with a fast
memory of limited size close to the processor and a slow
memory with no size limitations. 1 Since our goal is to bound
the number of writes to a particular memory level, we refine
this model as follows:
• A load operation consists of a read from slow memory

and a write to fast memory.
• A store operation consists of a read from fast memory

and a write to slow memory.
• An arithmetic operation can only cause reads and

writes in fast memory.
If we only have a lower bound on the total number of

loads and stores, then we don’t know enough to separately
bound the number of writes to either fast or slow memory.
And knowing how many arithmetic operations we perform
also does not give us a lower bound on writes to fast
memory. We need the following more detailed model of the
entire duration with which a word in memory is associated
with a particular “variable” of the computation.2

We consider a variable resident in fast memory from the
time it first appears to the time it is last used (read/written).
It may be written multiple times during this time period,
but it must be associated with a unique data item in the
program, for instance a matrix entry Aij . If it is a temporary
accumulator, say first for C11, then for C12, then between
each read/write we can still identify it with a unique entry
of C. A resident variable is stored in a fixed fast memory
location and identified with a unique data item in the
program. We distinguish two ways a variable’s residency
can begin and can end. Borrowing notation from [22], a
residency can begin when

R1: the location is loaded (read from slow memory and
written to fast memory), or

R2: the location is computed and written to fast mem-
ory, without accessing slow memory; for example,
an accumulator may be initialized to zero just by
writing to fast memory.

At the end of residency, we determine another label as
follows:

D1: the location is stored (read from fast memory and
written to slow memory), or

D2: the location is discarded, i.e., not read or written
again while associated with the same variable.

This lets us classify all residencies into one of 4 categories:
R1/D1, R1/D2, R2/D1, and R2/D2. In each category there
is a write to fast memory, and possibly more, if the value
in fast memory is updated. Given all the loads and stores
executed by a program, we can uniquely label them by the

1The technical report has an extension of the model and extends
Proposition 1 to multi-level hierarchies.

2We assume compiler-generated variables such as loop indices can reside
in fast memory and not cause data movement between the levels we are
interested in.



residencies they correspond to. Since each residency results
in at least one write to fast memory, the number of writes
to fast memory is at least half the total number of loads and
stores (this lower bound corresponds to all residencies being
R1/D1). This proves the following result:

Proposition 1: Given the preceding memory model, the
number of writes to fast memory is at least half the total
number of loads and stores between fast and slow memory.

Thus, the various existing communication lower bounds,
which are lower bounds on the total number of loads and
stores, immediately yield lower bounds on writes to fast
memory. In contrast, if most of the residencies are R1/D2 or
R2/D2, then we see that no corresponding lower bound on
writes to slow memory exists. In this case, if we additionally
assume the final output must reside in slow memory at the
end of execution, we can lower bound the number of writes
to slow memory by the size of the output. For the rest of this
paper, we will make this assumption, i.e., that the output
must be written to slow memory at the end of the algorithm.

III. BOUNDED DATA REUSE PRECLUDES
WRITE-AVOIDING

Using the computation directed acyclic graph (CDAG)
representation of an algorithm, we show that if each argu-
ment (input data or computed value) of a given computation
is used only a constant number of times, then no execution
order of the algorithm can decrease the number of writes
asymptotically, i.e., it cannot have a WA schedule. Recall
that for a given algorithm and input to that algorithm, its
CDAG has a vertex for each input, intermediate and output
argument, and edges according to direct dependencies. For
example, the operations x = y + z, x = x + w are
represented by five vertices w, x1, x2, y, z and four edges
(y, x1), (z, x1), (x1, x2), (w, x2). Note that an input vertex
has no incoming edges, but an output vertex may have
outgoing edges.

Theorem 1 (Bounded reuse precludes WA): Let G be the
CDAG of an algorithm A executed on input I on a sequential
machine with a two-level memory hierarchy. Let G′ be a
subgraph of G. If all vertices of G′, excluding the input
vertices, have out-degree at most d, then

1) If the part of the execution corresponding to G′

performs t loads, out of which N are loads of in-
put arguments, then the algorithm must do at least
d(t−N)/de writes to slow memory.

2) If the part of the execution corresponding to G′

performs a total of W loads and stores, of which
at most half are loads of input arguments, then the
algorithm must do Ω(W/d) writes to slow memory.

Proof: Of the t loads from slow memory, t−N must be
loads of intermediate results rather than inputs. These had to
be previously written to slow memory. Since the maximum
out-degree of any intermediate data vertex is d, at least d(t−

N)/de distinct intermediate arguments have been written to
slow memory. This proves (1).

If the execution corresponding to G′ does at least W/10d
writes to the slow memory, then we are done. Otherwise,
there are at least t = 10d−1

10d W loads. Applying (1) with
N ≤ W/2, we conclude that the number of writes to slow
memory is ≥ d( 10d−1

10d −
1
2 )Wd e = Ω(Wd ), proving (2).

This Theorem allows us to show that the certain “fast
algorithms” have no WA schedules.

Corollary 1 (Cooley-Tukey FFT cannot be WA):
Consider executing the n-point Cooley-Tukey FFT
algorithm on a sequential machine with a two-level memory
hierarchy whose fast memory has size M � n. Then the
number of stores is asymptotically the same as the total
number of loads and stores: Ω(n logn

logM ).
Proof: The Cooley-Tukey FFT has out-degree bounded

by d = 2, input vertices included. By [7], the total number of
loads and stores to fast memory performed by any schedule
on an input of size n is W = Ω(n log n/ logM). Since
W is asymptotically larger than n, and so also larger than
N = 2n = the number of input loads, the result follows by
applying Theorem 1 with G′ = G.

Corollary 2 (Strassen’s algorithm cannot be WA):
Consider executing Strassen’s matrix multiplication
algorithm on n-by-n matrices on the machine described in
Corollary 1. Then the number of stores is asymptotically
the same as the total number of loads and stores, namely
Ω(nω0/Mω0/2−1), where ω0 = log2 7.

Proof: Let G′ be the induced subgraph of the CDAG
that includes the vertices of the scalar multiplications and all
their descendants, including the output vertices. As described
in [8] (G′ is denoted there by DecC), G′ is connected,
includes no input vertices (N = 0), and the maximum out-
degree of any vertex in G′ is d = 4. The lower bound from
[8] on loads and stores for G′, and so also for the entire
algorithm, is W = Ω(nω0/Mω0/2−1). Apply Theorem 1.

Corollary 2 extends to any Strassen-like fast matrix mul-
tiplication algorithm (defined in [8]), with ω0 replaced with
the corresponding algorithm’s exponent. It also applies to
Strassen-like rectangular matrix multiplication (see [30]).

IV. EXAMPLES OF WA ALGORITHMS

Consider classical matrix multiplication (for i ∈ [m], k ∈
[n], j ∈ [l] do Cij+ = Aik · Bkj) which performs mnl
multiplications to compute Cm×l = Am×n · Bn×l. The
lower bound on loads and stores for this algorithm in a
two-level memory hierarchy with fast memory of size M is
Ω(mnl/M1/2) [22], [7], [10]. Algorithm 1 is a well-known
example of a CA schedule that matches the communication
lower bound when the block size parameter b is set to√
M/3. In addition it is also WA as noted by Blelloch et

al. [20] — it requires just ml writes to the slow memory.
For simplicity we assume that all expressions like

√
M/3,

m/b, etc., are integers. For a schedule to match the com-



Algorithm 1: 2-Level Blocked MM
Data: Cm×l, Am×n, Bn×l; Result: Cm×l+ = Am×n · Bn×l;

// L1 & L2 denote fast & slow memories.
1 b =

√
M1/3 // block size for L1; assume b divides n.

// A(i, k), B(k, j), C(i, j) refer to b× b blocks.
2 for i← 1 to m/b do
3 for j ← 1 to l/b do
4 load C(i, j) from L2 to L1 for k ← 1 to n/b do
5 load A(i, k) and B(k, j) from L2 to L1

C(i, j) = C(i, j) + A(i, k) ∗ B(k, j)

6 store C(i, j) from L1 to L2

Cmxl = Amxn * Bnxl 

n 

m 

l b 

X

T

B

n 

n 

n 

Solve TX=B for X 
Figure 2: Geometric picture of WA matrix multiplication
(left); WA TRSM (right).

munication lower bound, it must break the iteration space,
{i ∈ [m], k ∈ [n], j ∈ [l]}, into blocks of size b × b × b,
and execute each block contiguously (this is represented by
lmn points in the cube in Fig. 2(left) divided into smaller
b3-size cubes). For this, the necessary data – b× b blocks of
arrays A,B and C – must be loaded into the fast memory.
In Fig. 2 these correspond to projections of the subcube
onto the left face, representing array A, the front face (B)
and the bottom face (C). Thus for the price of loading 3b2

data, we are able to cover b3 points in the iteration space, or
equivalently, perform b3 arithmetic operations, thus making
the schedule CA. While any order of execution of the blocks
has CA properties, Algorithm 1 groups the execution of all
blocks of the iteration space corresponding to a block of C
(columns of subcubes marked by red arrow in Fig. 2). Since
each variable in C belongs to exactly one block of C, all
updates to it are accumulated before writing it back to the
slow memory just once, making the schedule write-avoiding.

Algorithm 2 presents WA triangular solve (solve TX = B
for Xn×n) which requires only as many writes to the slow
memory as the size of the output X . All loads or stores of
data are annotated with the write costs incurred in one itera-
tion and across all iterations. The total number of reads from
slow memory is an asymptotically optimal Θ(n3/M1/2).
Fig. 2(right) illustrates the schedule. Algorithm 3 presents
WA Cholesky factorization which does n2/2 writes (size
of the output) and Θ(n3/M1/2) reads to the slow memory.
The technical report [1] contains direct N -body methods,
and discusses how to adapt all the schedules in this section
to multi-level hierarchies.

V. CACHE-OBLIVIOUS MATRIX MULTIPLICATION
CANNOT BE WRITE-AVOIDING

Define a cache-oblivious (CO) algorithm [23] as one in
which the sequence of load (read from slow, write to fast
memory), store (read from fast, write to slow memory),
and arithmetic/logical instructions executed does not depend
on the memory hierarchy of the machine. Depending on
the cache policy, a load or a store instruction may or
may not result in actual data movement, but arithmetic
operations must be performed on the specified data in the
order specified.

We show that even with such general cache policies,
certain cache oblivious algorithms cannot be write-avoiding,
in fact they must do at least a constant factor times as many
writes as a CA algorithm does reads. This is in contrast to
the existence of many CO algorithms that are CA. Our proof
applies to any algorithm that has the following property:
Triply nested with two dimensional projections: The al-
gorithm is a set S of triples of nonnegative integers (i, j, k),
reads two array locations A(i, k) and B(k, j) and updates
array location C(i, j) for all triples in S; for simplicity we
call this update operation an “inner loop iteration”.

This class of algorithms includes direct linear algebra
(including algorithms in Sec. IV), tensor contractions, and
Floyd-Warshall all-pairs shortest-paths in a graph. We will
assume that there are no R2/D2 residencies (see Sec. II).

Lemma 1 (Markov’s inequality): If si ≥ 0 for i =
1, ..., N , A =

∑N
i=1 si/N is the average, and m > 1, then

N≤ ≡ |{i : si ≤ mA}| satisfies N≤ ≥ m−1
m N .

Theorem 2: Consider an algorithm that is triply nested
with two dimensional projections. First, suppose that for a
particular input I, the algorithm executes the same sequence
of instructions, independent of the memory hierarchy. Sec-
ond, suppose that for the same input I, and a fixed fast
memory size M , the algorithm is CA in the following sense:
the total number of loads and stores is at most c · |S|/M1/2

for some constant c > 0. Then independent of the cache
policy, when running with cache size M ′ ≤ 0.5M

(1+4c)2 , the
number of writes to slow memory is at least

Ws ≥
M

4(1 + 4c)2

⌊
|S|

2M3/2

⌋
= Ω

(
|S|
M1/2

)
(1)

Proof: Divide the stream of instructions executed by
the program into contiguous arithmetic segments, each of
which contains exactly 2M3/2 arithmetic operations ac-
cessing only fast memory, as well as the intervening load
and store operations. Thus the number of complete arith-
metic segments is nas ≡ b|S|/(2M3/2)c. Assume, w.l.o.g.,
nas ≥ 1. Let nM,i be the actual number of loads and
stores performed during arithmetic segment i. By assump-
tion

∑nas

i=1 nM,i ≤ c|S|/M1/2, so we can bound the average
value 1

nas

∑nas

i=1 nM,i ≤ (c|S|/M1/2)
b|S|/(2M3/2)c ≤ 4cM .

By Lemma 1 (with m = 2) we get n≤ ≡ |{i : nM,i ≤
8cM}| ≥ 0.5nas. For each of these n≤ arithmetic segments



Algorithm 2: 2-Level Blocked Triangular Solve (TRSM)
Data: T is n× n upper triangular, Bn×n; Result: Solve TX = B for Xn×n (X overwrites B)

1 b =
√
M1/3 // block size for L1; assume n is a multiple of b

2 for j ← 1 to n/b do // T (i, k), X(k, j), and B(i, j) refer to b-by-b blocks of T, X, and B
3 for i← n/b downto 1 do // | #writes to L1 | total #writes to L1 |
4 load B(i, j) from L2 to L1 // | b2 | (n/b)2 · b2 = n2 |
5 for k ← i+ 1 to n/b do
6 load T (i, k) and X(k, j) from L2 to L1 // | 2× b2 | 2× .5(n/b)3 · b2 = n3/b |
7 B(i, j) = B(i, j)− T (i, k) ∗X(k, j) // | - | - |

8 load T (i, i) from L2 to L1 // half as many writes as for B(i, j) as counted above
9 solve T (i, i) ∗ Tmp = B(i, j) for Tmp; B(i, j) = Tmp // b-by-b TRSM

10 store B(i, j) from L1 to L2 // #writes to L2 = b2, total #writes to L2 = (n/b)2 · b2 = n2

Algorithm 3: 2-Level Blocked Cholesky An×n = LLT

Data: symmetric positive-definite An×n (only lower triangle of A is
accessed)

Result: L such that A = LLT (L overwrites A)
1 b =

√
M1/3 // block size for L1; assume b divides n.

// A(i, k) refers to b-by-b block of A
2 for i← 1 to n/b do
3 load A(i, i) (just the lower half) from L2 to L1

4 for k ← 1 to i− 1 do
5 load A(i, k) from L2 to L1

6 A(i, i) = A(i, i)− A(i, k) ∗ A(i, k)T

7 overwrite A(i, i) by its Cholesky factor
8 store A(i, i) (just the lower half) from L1 to L2

9 for j ← i+ 1 to n/b do
10 load A(j, i) from L2 to L1

11 for k = 1 to i− 1 do
12 load A(i, k) and A(j, k) from L2 to L1

13 A(j, i) = A(j, i)− A(j, k) ∗ A(i, k)T

14 load A(i, i) (just the lower half) from L2 to L1

15 solve Tmp ∗ A(i, i)T = A(j, i) for Tmp; A(j, i) = Tmp
16 store A(j, i) from L1 to L2

we apply the Loomis-Whitney inequality [31] to get a lower
bound on the product of the number of entries |A|, |B| and
|C| of the three matrices that are accessed in the arithmetic
segment: (|A|·|B|·|C|)1/2 ≥ 2M3/2. The C matrix is being
written by the algorithm, so we would like a lower bound
on |C|. Since there are no R2/D2 arguments, we can bound
|A| and |B| by bounding the total number of R1 and D1
arguments: The first is at most M plus #loads, the latter is
at most M plus #stores. The total number of R1 and D1
arguments is at most 2M + #loads + #stores = 2M +
nM,i ≤ (2 + 8c)M . Thus |C| ≥ 4M3

|A|·|B| ≥
4M3

((2+8c)M)2 =
M

(1+4c)2 . Now suppose we run the algorithm with a cache
of size M ′ ≤ 0.5M/(1 + 4c)2. Each of these n≤ arithmetic
segments will update M/(1 + 4c)2 entries of C. This will
cause at least 0.5M/(1 + 4c)2 writes to slow memory, for a
total number of writes of at least

n≤ ·
0.5M

(1 + 4c)2
≥ nas

2
· 0.5M

(1 + 4c)2

=
0.25

(1 + 4c)2
Mb|S|/(2M3/2)c = Ω

(
|S|
M1/2

)
.

Corollary 3: Any CO algorithm satisfying the hypothesis
in Theorem 2 cannot be WA in the following sense: For all
fast memory sizes M , the number of writes to slow memory
is at least

Ws ≥
M

2
b|S|/(4

√
2(1 + 4c)3M3/2)c = Ω(

|S|
M1/2

), (2)

which is asymptotically the same as the number of reads it
performs.

Proof: Denote the M in Corollary 3 by M̂ , and then
apply Theorem 2 with M ′ = M̂ and M = 2(1 + 4c)2M̂ , so
the lower bound in (1) becomes the one in (2).

Our proof technique applies more generally to the broad
class of algorithms – nested loops that access arrays
– considered in [9]. The formulation of Theorem 2 will
change because the exponents 3/2 and 1/2 will vary de-
pending on the algorithm, and which arrays are read and
written.

VI. CACHE REPLACEMENT POLICY AND HARDWARE
COUNTER MEASUREMENTS

While the algorithms describe in Section IV explicitly
control movement of data between slow and fast memories,
most hardware platforms do not expose such low level
control to the programmer. Instead, variables are mapped
to virtual memory addresses, which are in turn mapped to
hardware locations by a cache replacement policy. The Least
Recently Used (LRU) policy is a popular candidate because
of the robust theoretical guarantees on its performance in an
online setting [32], and its suitability for multi-level memory
hierarchies [23]. On a memory (or cache) of size M , it
maintains a list of M distinct virtual memory addresses most
recently accessed by a sequence of instructions and keeps a
copy of them in the memory, ready for future instructions
in the sequence. If the next instruction accesses an address
not on the list, the required location is brought in, and to
make space, the copy corresponding to the last address on
the LRU list is discarded, which if modified, is written back
to the slow memory.

In Algorithms 1 and 2, three blocks of size M/3 each are
explicitly moved to the fast memory and retained there while
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64 Bytes in size. “Two-level WA” attempts to minimize write-backs from L3 to DRAM but not between L1, L2, and L3.

instructions involving them are completed. What happens
if the same sequence of instructions is executed with the
addresses mapped to fast memory with an LRU policy under
the covers? The WA properties can be preserved by slightly
adjusting the block size.

Proposition 2: Suppose that the two-level WA schedule
for MM (Cm×l = Am×n ·Bn×l) in Algorithm 1 is executed
on a sequential machine with a two-level memory hierarchy
whose fast memory has size M � ml, uses the LRU
replacement policy, and is fully associative. If the block
size b is chosen so that five blocks of size b-by-b fit in
the fast memory with at least one cache line remaining
(5b2 ∗ sz(element) + 1 ≤ M ), the number of write-backs
to the slow memory is ml, irrespective of the order of
instructions within the block multiplication (line 7 of Alg. 1).

This proposition supposes no change to the LRU policy,
in contrast to the modified LRU policy required to support
the the Asymmetric Ideal-Cache model in [20].
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The idea behind the proof is that while
a column corresponding to a block of
C is being executed, the C-block is
frequently accessed keeping it high in
LRU priority. No variable in the C-block
falls below LRU priority 5b2 and, once
loaded, remains in fast memory until the
column is completely executed. This is
because in each block of the iteration
space, one b× b block of variables each
from arrays A,B and C are used, and
in the next block of the iteration space,
new blocks of A and B are used while
reusing the C-block (see Figure 4). In the
technical report, we design block matrix
multiplication (line 7 in Alg. 1) so that LRU avoids writes
when b is such that three b×b blocks fit in the fast memory.

We support these claims with hardware measurements of
cache event counters (Figure 3) for three MM schedules –
cache-oblivious [23], Intel MKL dgemm, and the WA sched-
ule in Alg. 1 – on an Intel Nehalem-EX 7560 processor. We

track the traffic between L3 (fast memory) and DRAM (slow
memory), counting the number of writebacks to slow mem-
ory using L3_VICTIMS.M, the number of writes from slow
to fast memory with LLC_S_FILLS.E and the number of
evictions from fast memory using L3_VICTIMS.E [33].
We fix the output at 4K × 4K (2× 106 cache lines on this
machine), and vary the other dimension n between 27 and
212. Predictably, the number of loads increases linearly with
n in all three schedules. In the first two schedules, writebacks
to slow memory also increase proportionally, whereas in the
WA schedule, they remain very close to the lower bound,
i.e., the size of the output. We speculate that the small gap
between the writebacks in WA schedule and the lower bound
arises because the machine implements an approximation to
the LRU policy [34], [35] and has limited associativity [36].

Finally, LRU replacement policy also works for other
algorithms in this paper.

Proposition 3: If the two-level WA TRSM (Algorithm 2
with n × n ×m input size), Cholesky factorization (Algo-
rithm 3 with n× n input size) and direct N-body algorithm
(with N input size; see technical report) are executed on a
sequential machine with a two-level memory hierarchy, and
the block size b is chosen so that five blocks of size b-by-b
are smaller than the fast memory (5b2 ∗ sz(elements) + 1 ≤
M ), the number of write-backs to slow memory caused by
the LRU policy running on a fully associative fast memory
are nm, n2/2, and N , respectively, irrespective of the order
of instructions within the call nested inside the loops.

VII. PARALLEL WA ALGORITHMS

There is a large literature on CA distributed memory
parallel algorithms (see [4], [9], [37], [38] and the references
therein), and in this section we focus on classical dense
linear algebra, including MM, LU factorization and similar
operations. In the model used there, communication is
measured by the number of words and messages moved into
and out of individual processors’ local memories along the
critical path of the algorithm (under various assumptions).
So in this model, a read from one processor’s local memory



is necessarily a write in another processor’s local memory.
In other words, if we are only interested in counting “local
memory accesses” without further architectural details, CA
and WA are equivalent to within a modest factor. We may
refine this simple architectural model in several ways. We
assume that the processors are homogeneous, that each one
has its own (identical) memory hierarchy and we define three
models:

Model 1: Each processor has a two-level memory hi-
erarchy, labeled L2 (say DRAM) and L1 (say cache).
Interprocessor communication is between L2s of different
processors. Initially one copy of all input data is stored in
a balanced way across the L2s of all processors.
Model 2: Each processor has a three-level memory hier-
archy, labeled L3 (say NVM), L2, and L1. Interprocessor
communication is between L2s of different processors.

Model 2.1: Initially one copy of all input data is stored
in a balanced way across the L2s.
Model 2.2: Initially one copy of all input data is stored
in a balanced way across the L3s of all processors. In
particular, we assume the input data is too large to fit in
all the L2s.
We let M1, M2, and M3 be the sizes of L1, L2, and L3 on

each processor, respectively. For all these models, our goal is
to determine lower bounds on communication and identify or
invent algorithms that attain them. In particular, we are most
concerned with interprocessor communication and writes
(and possibly reads) to the lowest level of memory on each
processor, since these are the most expensive operations.

First consider Model 1, the simplest. The output size is
W1 = n2/P , a lower bound on the number of writes to
L2. The results in [22] provide a lower bound on inter-
processor communication of Ω(W2) words moved, where
W2 = n2/

√
Pc, and 1 ≤ c ≤ P 1/3 is the number of copies

of the input data that the algorithm can make (so also limited
by cn2/P ≤ M2). And [22] together with Proposition 1
tells us that there are Ω(W3) reads from L2/writes to L1,
where W3 = (n3/P )/

√
M1. In general W1 ≤ W2 ≤ W3,

with asymptotically large gaps in their values (i.e., when
n�

√
P � 1). It is natural to ask whether it is possible to

attain all three lower bounds, defined by W1, W2, and W3.
A natural idea is to try to use a CA algorithm to minimize
writes from the network, and a WA algorithm locally on each
processor to minimize writes to L2 from L1, the highest
level. While this does minimize writes from the network, it
does not attain the lower bound for writes to L2 from L1.
For example, for n-by-n matrix multiplication the number of
writes to L2 from L1 exceeds the lower bound Ω(n2/P ) by
a factor Θ(

√
P ), where P is the number of processors. But

since the number of writes O(n2/
√
P ) equals the number

of writes from the network, which are very likely to be more
expensive, this cost is unlikely to dominate.

Now consider Model 2.1. Here the question becomes

whether we can exploit the additional (slow) memory NVM
to go faster. There is a class of algorithms that may do
this, including for linear algebra (see [4], [10], [39], [38]
and the references therein), that replicate the input data to
avoid (much more) subsequent interprocessor communica-
tion. In the case of matrix multiplication, the 2.5D algorithm
replicates the data c ≥ 1 times in order to reduce the
number of words transferred between processors by a factor
Θ(c1/2). By using additional NVM one can increase the
replication factor c for the additional cost of accessing NVM.
We consider two algorithms. The first one, referred to as
2.5DMML2, replicates the data 1 ≤ c2 < P 1/3 times, using
only L2. The second one, referred to as 2.5DMML3, repli-
cates the data c3 times, using L3, where c2 < c3 ≤ P 1/3.
A detailed analysis of these algorithms can be found in the
technical report. Let βNW be the time per word to send data
over the network, and similarly let β23 be the time per word
to read data from L2 and write it to L3, and let β32 be the
time per word to read from L3 and write to L2; thus we
expect β23 � β32. In summary, with this notation we can
say that the ratio of the dominant bandwidth costs of these
algorithms is domβcost(2.5DMML2)

domβcost(2.5DMML3) =
√

c3
c2

βNW

βNW+1.5β23+β32

which makes it simple to predict which is faster, given the
algorithm and hardware parameters.

In the third scenario, Model 2.2, we assume that the
data does not fit in DRAM, so we need to use NVM.
We have two communication lower bounds to try to attain,
on interprocessor communication and on writes to NVM.
In Theorem 3 we prove this is impossible, that any al-
gorithm must asymptotically exceed at least one of these
lower bounds. A lower bound on writes to L3 (NVM) is
W1 = n2/P (the size of the output, assuming it is balanced
across processors). W2 and W3 are the same as before.
Treating L2 (and L1) on one processor as “fast memory” and
the local L3 and all remote memories as “slow memory”,
[22] and Proposition 1 again give us a lower bound on writes
to each L2 of Ω(W ′3), where W ′3 = (n3/P )/

√
M2, which

could come from L3 or the network.
Theorem 3: Assume n �

√
P � 1 and n2/P � M2.

For the MM algorithm, if the number of words written
to L2 from the network is a small fraction of W ′3 =
(n3/P )/

√
M2, in particular if the lower bound Ω(W2),

where W2 = n2/
√
Pc, is attained for some 1 ≤ c ≤ P 1/3,

then Ω(n2/P 2/3) words must be written to L3 from L2.
In particular the lower bound W1 = n2/P on writes to L3

from L2 cannot be attained.
Proof: The assumptions n �

√
P � 1 and n2/P �

M2 imply W1 � W2 � W ′3. If the number of words
written to L2 from the network is a small fraction of W ′3, in
particular if the W2 bound is attained, then Ω(W ′3) writes to
L2 must come from reading L3. By the Loomis-Whitney
inequality [31], the number of multiplications performed
by a processor satisfies n3/P ≤

√
|A| · |B| · |C|, where

|A| is the number of distinct entries of A available in



L2 sometime during execution (and similarly for |B| and
|C|). Thus n3/P ≤ max(|A|, |B|, |C|)3/2 or n2/P 2/3 ≤
max(|A|, |B|, |C|). n2/P 2/3 is asymptotically larger than
the amount of data O(n2/P ) originally stored in L3, so
Ω(n2/P 2/3) words must be written to L3. But this asymp-
totically exceeds W1.

In the technical report, we present two algorithms
for matrix multiplication (as well as LU factorization
without pivoting), each of which attains one of these
lower bounds. 2.5DMML3ooL2 (“out of L2”) will at-
tain lower bounds given by W2, W3, and W ′3, and
SUMMAL3ooL2 will attain lower bounds given by W1,
W3, and W ′3. 2.5DMML3ooL2 will basically implement
2.5DMM, moving all the transmitted submatrices to L3

as they arrive (in sub-submatrices of size M2). SUM-
MAL3ooL2 will perform the SUMMA algorithm, comput-
ing each

√
M2-by-

√
M2 submatrix of C completely in L2

before writing it to L3. Using the same notation as above,
we can compute the dominant bandwidth costs of these
two algorithms as domβcost(2.5DMML3ooL2) = βNWn2

√
Pc3

+
β23n

2

√
Pc3

+ β32n
3

P
√
M2

, domβcost(SUMMAL3ooL2) = βNWn3

P
√
M2

+
β23n

2

P + β32n
3

P
√
M2

, which may again be easily compared given
the algorithm and hardware parameters.

VIII. KRYLOV SUBSPACE METHODS

Krylov subspace methods (KSMs) are a family of
algorithms to solve linear systems and eigenproblems.
Communication-avoiding, or s-step Krylov subspace meth-
ods (CA-KSMs) are variants of classical KSMs that produce
the same iterates in exact arithmetic, but can reduce data
movement in the computation of basis vectors and orthogo-
nalization operations; see, e.g., [40].

The main transformation in CA-KSMs is splitting the
KSM iteration loop into an outer loop, which constructs
O(s)-dimensional Krylov bases and performs block orthog-
onalization of the basis vectors, and an inner loop, which
performs s iterations, updating the coordinates of the vectors
in the generated bases. The bases can be computed in
a blocked manner using a “matrix powers” optimization
which exploits temporal locality, and orthogonalizations can
be computed by matrix multiplication [40]. While these
optimizations reduce communication, they do not reduce L2

writes: if the matrix dimension n is sufficiently large with
respect to M1, N/s outer iterations incur O(Nn) L2 writes,
attaining the lower bound for N iterations.

However, writes can be avoided by exploiting a “stream-
ing matrix powers” optimization. The idea is to interleave
blockwise orthogonalization with blockwise matrix powers
computations, each time discarding the entries of the basis
vectors from fast memory after they have been multiplied
and accumulated. If the matrix powers optimization reduces
L2 reads of vector entries by a factor of f(s), then the
streaming matrix powers optimization reduces L2 writes by

Θ(f(s)), at the cost of doubling the number of operations to
compute the bases. In cases where f(s) = Θ(s), like for a
(2b+ 1)d-point stencil on a sufficiently large d-dimensional
Cartesian mesh when s = Θ(M

1/d
1 /b), still assuming n is

sufficiently large with respect to M1, N/s outer iterations of
a CA-KSM incur O(Nn/s) L2 writes, an s-fold reduction
compared to N iterations of a classical KSM.

The preceding loop transformation applies to both
Lanczos-based and Arnoldi-based KSMs. The streaming
matrix powers optimization was proposed earlier in [40,
Sec. 6.3] and discussed again in [4, Sec. 7.2.4]; these
works considered minimizing both reads and writes and
only suggested this optimization when the matrix’s memory
footprint (e.g., number of nonzeros) is sufficiently small with
respect to n and s. The contribution here is recognizing that
the matrix’s memory footprint is irrelevant when minimizing
just writes, thus this optimization applies more generally.

IX. CONCLUSIONS

Motivated by the fact that writes to some levels of
memory can be much more expensive than reads (measured
in time or energy), for example in the case of nonvolatile
memory, we have investigated algorithms that minimize the
number of writes. First, we established new lower bounds
on the number of writes needed to execute a variety of
algorithms. In some cases (e.g., classical linear algebra),
these lower bounds are asymptotically smaller than the lower
bound on the number of reads, suggesting large savings are
possible. We showed that this not the case for some “fast”
algorithms. For some classical linear algebra versions and
Krylov subspace methods, we designed sequential versions
that minimize the number of reads and writes on two-
level memories. We also presented parallel versions of these
algorithms for different memory and network configurations
in parallel machines that represent different points in the
tradeoff between writes to nonvolatile memory and commu-
nication over the network. We proved that cache-oblivious
versions of some algorithms cannot minimize writes.
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