
A Communication-Optimal N-Body Algorithm for Direct Interactions

Michael Driscoll∗1, Evangelos Georganas∗1, Penporn Koanantakool∗1, Edgar Solomonik∗, and Katherine Yelick∗†
∗Computer Science Division, University of California, Berkeley
†Lawrence Berkeley National Laboratory, Berkeley, CA
{driscoll,egeor,penpornk,solomon,yelick}@cs.berkeley.edu

Abstract—We consider the problem of communication avoid-
ance in computing interactions between a set of particles in
scenarios with and without a cutoff radius for interaction.
Our strategy, which we show to be optimal in communication,
divides the work in the iteration space rather than simply
dividing the particles over processors, so more than one
processor may be responsible for computing updates to a
single particle. Similar to a force decomposition in molecular
dynamics, this approach requires up to √

p times more memory
than a particle decomposition, but reduces communication costs
by factors up to √

p and is often faster in practice than a
particle decomposition [1]. We examine a generalized force
decomposition algorithm that tolerates the memory limited
case, i.e. when memory can only hold c copies of the particles
for c = 1, 2, ...,

√
p. When c = 1, the algorithm degenerates

into a particle decomposition; similarly when c =
√
p, the

algorithm uses a force decomposition. We present a proof that
the algorithm is communication-optimal and reduces critical
path latency and bandwidth costs by factors of c2 and c,
respectively. Performance results from experiments on up to
24K cores of Cray XE-6 and 32K cores of IBM BlueGene/P
machines indicate that the algorithm reduces communication
in practice. In some cases, it even outperforms the original
force decomposition approach because the right choice of c
strikes a balance between the costs of collective and point-to-
point communication. Finally, we extend the analysis to include
a cutoff radius for direct evaluation of force interactions. We
show that with a cutoff, communication optimality still holds.
We sketch a generalized algorithm for multi-dimensional space
and assess its performance for 1D and 2D simulations on the
same systems.

Keywords-parallel algorithms; communication-avoiding algo-
rithms; particle methods;

I. INTRODUCTION

Communication time can comprise a significant portion
of execution time for parallel algorithms. To make mat-
ters worse, hardware trends indicate that interconnection
network performance will lag far behind computational
performance in exascale machines. One approach to bridging
the growing performance gap is the design of new algorithms
that provably minimize communication. In this paper, we
give such an algorithm for the N-body problem. Using a
framework developed by Ballard et al. [2], we give a lower
bound on the communication in terms of the number of

1Michael, Evangelos, and Penporn contributed equally to this work and
are listed alphabetically.

messages and words sent along the critical path. We show
that our algorithm meets the lower bound, and consequently
is communication-optimal. Furthermore, we can exploit a
“lower” lower bound by taking advantage of extra memory.
With enough memory for c copies of the particles, we can
theoretically reduce bandwidth and latency costs by factors
up to c and c2, respectively. This effect is also observable in
practice: performance results from two systems indicate that
our algorithm achieves nearly perfect strong scaling with the
right choice of c. We find that maximizing c may not yield
the best performance in practice because collectives fail to
scale logarithmically as our model assumes, so c should be
treated as a tuning parameter.

The contributions of this paper are:
• An interpretation of the lower bound on communication

for an N-body simulation timestep. The bound captures
both the number of messages and the number of words
sent along the critical path.

• An algorithm for particle interactions that achieves the
lower bound for a fixed memory size. The algorithm
allows finite cutoff distances beyond which interactions
have constant or zero effect.

• Performance results showing attainable speedups from
the new algorithm on two distributed-memory ma-
chines.

The paper is organized as follows. Section II introduces
communication-avoiding algorithms and provides a deriva-
tion of the communication lower bound for the N-body prob-
lem. Section III gives the communication-avoiding N-body
algorithm, proves its optimality, and presents performance
results from experiments on two supercomputers. Section IV
generalizes the algorithm to include a cutoff radius beyond
which particles have constant effect. Again, we give a proof
of optimality and performance results from real systems.
Section V concludes by describing future work.

II. PREVIOUS WORK

Our communication-avoiding algorithm was motivated by
an examination of communication lower bounds for the
N-body problem. A recent paper [2] introduced general
communication lower bounds applicable to an variety of
linear algebra operations. The analysis of these lower bounds
has led to new algorithmic developments, in particular



2.5D algorithms [3]. These communication lower bounds
are easily extensible to direct N-body force calculations,
as is the concept of 2.5D algorithms. In this section, we
detail this motivating work and review related literature and
applications which have applied similar analyses to the N-
body problem.

A. Communication lower bounds

In 1981, Hong and Kung introduced communication lower
bounds for sequential matrix multiplication [4]. These lower
bounds were extended to parallel matrix multiplication by
Irony et al. [5] and, for the PRAM model, by Aggarwal
et al. [6]. More recently, these lower bounds have been
generalized to a larger class of dense linear algebra problems
by Ballard et al. [2]. The general form of the lower bounds
on latency S and bandwidth W can be written in terms of
the memory size M , number of operations required by the
problem F , and an upper bound on the number of operations
that can be done with M operands, H ,

S = Ω

(
F

H

)
, W = Ω (S ·M) = Ω

(
M · F
H

)
. (1)

The number of force evaluations that can be computed with
M particles can be upper-bounded as HMD = O(M2).
This upper bound, which represents the maximal amount of
potential data-reuse, yields the communication lower bounds

SMD = Ω

(
F

M2

)
, WMD = Ω

(
F

M

)
.

If all interactions of n particles are computed on p processors
in a load-balanced fashion, each processor must compute
O(n2/p) force evaluations, yielding the following commu-
nication lower bounds

Sdirect = Ω

(
n2

p ·M2

)
, Wdirect = Ω

(
n2

p ·M

)
. (2)

Immediately, we notice that M is in the denominator of
these lower bounds, suggesting that increased memory size
allows less communication. In the parallel case, it turns out
that given extra memory, data-replication can be used to
lower the communication cost. In fact, many existing N-
body algorithms already use data replication, as we detail
below. The novelty of our algorithm is that we parameterize
the number of data copies and minimize communication for
any amount of memory, as done by 2.5D algorithms for
dense linear algebra. 2.5D algorithms are a memory-aware
extension of 3D algorithms, which use p1/3 copies of data
on p processors [7], [8], [6], [9], [10].

B. Particle and force decompositions

The naive approach for parallelizing N-body simulations
is to assign each processor n/p particles. If a processor
computes all the interactions for its n/p particles with all

other particles, the amount of communication required along
the critical path is

Sparticle = O(p), Wparticle = O(n),

since each processor must send its data to each other
processor.

Plimpton pointed out that by assigning each processor a
block of force interactions rather than particles, communica-
tion is reduced [1]. In particular, n2 total interactions need to
be computed, and each of p processors computes an n/

√
p-

by-n/
√
p block of the interactions. Thus, each processor

requires only 2n/
√
p particles to compute its interactions

and must return 2n/
√
p force contributions. Assuming the

particle locations are not initially replicated and the forces
must be collected at the end, a broadcast and a reduction
is required to communicate these data sets. Thus the total
communication costs are

Sforce = O(log(p)), Wforce = O(n/
√
p).

Ignoring the log(p) factor, we note that with respect to the
particle decomposition, force decomposition reduces latency
by a factor of p and bandwidth by a factor of

√
p. However,

the memory usage goes up by a factor of
√
p since each

particle is replicated
√
p times. We note that this memory

usage and costs are in accordance with our lower bound,
Equation 2.

C. Cutoff and spatial decomposition

In molecular dynamics simulations, it is common to
impose a cutoff on direct force interaction evaluations. Force
interactions decay with distance, so their evaluation can be
truncated by ignoring interactions between particles which
lie beyond some cutoff distance. Typically, a correction term
accounts for the contribution of long-distance interactions.
Since the long-distance contribution to the potential is
smooth, grid-based solvers are often employed to evaluate
this correction. Instead of analyzing the costs associated with
computing long-range interactions, we will instead focus on
the analysis of direct interactions within the cutoff distance.

Our lower bounds extend trivially to the case where
direct interactions are truncated within a cutoff. The only
modification to the argument is a difference in the total
number of computations which is now not n2, but rather
F = nk, where k is the number of interactions necessary for
each particle. The lower bounds on the number of messages
and words that must be sent are

Scutoff = Ω

(
nk

p ·M2

)
, Wcutoff = Ω

(
nk

p ·M

)
. (3)

A spatial decomposition is a natural choice for paralleliz-
ing problems with a cutoff distance. In such a decomposi-
tion, each processor owns all particles in a region of the
physical simulation domain. Consequently, processors must
only communicate with their neighbors, with the number of



neighbors given by the ratio of the cutoff with respect to the
length of the simulation box and the dimensionality of the
problem space. For instance, given some cutoff rc = mlp
where lp is the diameter of the box of particles owned
by a processor and m is the number of boxes spanned,
each processor must communicate with O(md) processors,
where d is the number of dimensions. If processors form
pairs to compute their particles interaction, a message of
size O(n/p) is required between each pair of interacting
processors. This spatial decomposition algorithm has a com-
munication cost of

Sspatial = O(md), Wspatial = O(nmd/p).

If we plug in k = O(nmd/p) into Equation 3, we see that
the spatial decomposition is communication optimal in the
case of minimal memory M = O(n/p).

D. Neutral territory methods

Force decomposition can be done when a cutoff is im-
posed on interactions, but physical locality must now be
considered in the algorithm. Hybrids between force and
spatial decomposition can provide communication optimal-
ity and yield the methods most commonly used in practice
currently. Generally these methods can be defined as ‘neutral
territory’ (NT), since force interactions are computed on
processors which own neither of the interacting particles in
their assigned spatial territory. These algorithms achieve the
communication costs

SNT = O(1), WNT = O(nmd/p1.5),

which is asymptotically optimal for M = O(n/
√
p) accord-

ing to the lower bound (Equation 3).
Snir proposed a hybrid between a spatial and a force

decomposition for cutoff interactions in 3-dimensional space
in [11]. Snir’s algorithm performs a multicast of particle
locations to a set of nearby processors. Snir also gave
lower bounds on the communication cost for this problem
which showed the optimality of his algorithm asymptotically.
However, Snir did not consider the limited-memory scenario.

The neutral territory method [12] was introduced by Shaw
independently of Snir and achieves the same asymptotic cost.
Shaw’s algorithm selects a 3-dimensional import region that
has a volume smaller than that of Snir’s by a constant factor.

The midpoint method [13] is another interesting variation
of neutral territory methods. In the midpoint method, a
processor computes all interactions for which the midpoint
of the interacting particles lies in the processor’s territory.
While the method is not asymptotically optimal, it has a
smaller import region for a typical number of processors.
The method also has advantages in latency and throughput
on torus networks, and can be generalized to multi-particle
interactions.

E. Existing applications

Existing molecular dynamics applications that employ
neutral territory decompositions already utilize the knowl-
edge that replication can lower communication cost.

NAMD [14] is a parallel molecular dynamics simulation
package which runs on top of the Charm++ runtime sys-
tem [15]. Charm++ is an object-based parallel framework
which decomposes work and data into ‘chare’ objects. Ar-
rays of chare objects are dynamically mapped to processors
by the runtime system. Chares communicate with each other
via asynchronous message invocations.

NAMD employs an algorithm that decomposes parti-
cles spatially into an array of ‘patch’ chare objects and
decomposes forces into ‘compute’ chare objects. Patches
communicate particle data to compute objects and compute
objects force contributions back to patches. This algorithm
employs data replication, and achieves the same asymptotic
communication complexity as the neutral territory algorithm
from the previous section.

The neutral territory method as described by Shaw [12]
is employed by the specialized supercomputer Anton [16].
This supercomputer is designed to run parallel molecular
dynamics simulations at high efficiency. The architecture
was co-designed with consideration for the 3D structure of
the spatial decomposition and the neutral territory interaction
algorithm.

Desmond [17] is a general-purpose molecular dynamics
package developed in association with Anton. Desmond uses
the midpoint method to evaluate direct interactions. This
software achieves good absolute performance and scalability
on modern architectures such as the BlueGene/P.

III. INTERACTIONS WITH NO CUTOFF RADIUS

This section addresses simulations in which every par-
ticle interacts with every other particle. We present a
communication-optimal algorithm for computing interac-
tions between all pairs of particles, provide a proof of
its optimality, and present performance results from our
implementation.

A. The all-pairs interaction algorithm

The communication-avoiding algorithm, given in Algo-
rithm 1 as pseudocode, uses p processors to compute inter-
actions between a set S of n particles. The algorithm also
takes as input a replication factor c describing the number
of times the set of particles can be replicated in available
memory. The processors are arranged in a two-dimensional
grid with p/c columns (or teams) and c rows. Particles are
distributed evenly among the teams into local subsets St (for
team t), and teams are responsible for computing updates to
their local subset.

The algorithm proceeds as follows. A team leader broad-
casts St to the rest of the team. Each team member makes
a second copy in an exchange buffer. Each processor then



Algorithm 1 S′ = CA-ALL-PAIRS-N-BODY(S , c)

Input: Replication factor c, the number of extra copies of
the particles that will fit in memory.

Input: p processors arranged in two-dimensional grid of
p/c columns (teams) and c rows.

Input: Set S of n particles divided evenly among team
leaders into local subsets St.

Output: Set S′ of n particles where every particle has
interacted with every other particle.

1: // In parallel on all processors:

2: Broadcast St from team leader to team members.
3: Copy St to exchange buffer S′t of size dnc/pe.
4: Given a kth-row processor, shift S′t by k along row.
5: for p/c2 steps do
6: Shift S′t by c along row.
7: Update particles in St based on effect of S′t.
8: end for
9: Sum-reduce updates within team.

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

1

2

3

n particles

 P/c processor teams 

c

Figure 1: Illustration of Algorithm 1. The color boxes traces
the path of the fifth team’s particles. The labels show: (1)
the initial broadcast step within a team; (2) the skewing of
particles according to the row index; (3) the first of p/c2

shifts and updates. Not shown is a final reduction within a
column to combine updates.

shifts its exchange buffer row-wise, with the shift magnitude
determined by the row index (i.e. processors on row four
shift east by four modulo p/c). Then, for p/c2 steps, each
processor shifts its exchange buffer by c and, upon receiving
a new set of particles, updates St accordingly. Finally, sum-
reductions within each team combine the updates. Figure 1
illustrates the algorithm.

Our algorithm “interpolates” between the particle decom-
position and force decomposition algorithms of Plimpton
[1]. In fact, either decomposition falls out at extreme values
of c. When c = 1, the algorithm resembles a particle
decomposition with simple point-to-point shifting, and each
team of one processor is responsible for computing all forces
on its subset of particles. Similarly, when c =

√
p, the

algorithm uses a force decomposition.

B. Communication optimality

Recall from Equation 2 the lower bounds for communi-
cation in a direct N-body timestep,

SMD = Ω

(
n2/p

M2

)
, WMD = Ω

(
n2/p

M

)
.

An analysis of our algorithm reveals that it meets these
bounds.

By definition, the replication factor c is the number of
extra copies of the particles than can be stored in memory.
It follows that the total memory required per core is

M = O

(
c · n

p

)
. (4)

We analyze the communication along the critical path
to ascertain a lower bound on the total communication
cost. The cost can be expressed as the sum of costs of
three phases: the initial broadcast and skewing, the shifting
steps, and the final reduction. First, each of p/c teams
executes a broadcast of O(cn/p) words among c processors.
Assuming logarithmic collective performance, the broadcast
can be completed in parallel with log (c) messages. Then,
each processor skews its particles row-wise in parallel,
sending O(cn/p) words in O(1) messages. Next, the pro-
cessors perform p/c2 shifting steps in which they send O(1)
messages of O(cn/p) words, yielding a subtotal cost of
O(p/c2) messages and O(n/c) words. A final reduction
moves O(cn/p) words in log (c) messages. Asymptotically,
the total cost is

Sca = O

(
1

c2
· p

)
, Wca = O

(
1

c
· n

)
. (5)

Solving Equation 4 for c and substituting the result reveals
that the algorithm meets the lower bounds:

Sca = O

(
n2/p

M2

)
, Wca = O

(
n2/p

M

)
.

This analysis reveals that the algorithm is communication-
optimal for all integral values of c = 1, 2, ...,

√
p. However,

observe that the lower-bound itself is a function of c.
Surprisingly enough, we can realize a “lower” lower-bound
by utilizing more memory. This is the key insight into why
our algorithm reduces communication in practice.

C. Performance results

We built a simple particle simulation that uses our algo-
rithm and measured its performance on two machines from
different vendors. Our code simulates particles moving in a
two-dimensional space with reflective boundary conditions.
The particles exert a repulsive force on each other that drops
off with the square of their distance. The force is symmetric,
but it need not be and we do not apply optimizations to
exploit the symmetry. The particles are 52 bytes in size.



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

c=1 c=2 c=4 c=8 c=16 c=32

E
x
e
c
u

ti
o
n

 T
im

e
 P

e
r 

T
im

e
s
te

p
 (

s
e

c
)

	

Execution Time vs. Replication Factor

Computation
Communication (Shift)
Communication (Reduce)

Replication Factor

(a) Hopper, 6,144 cores, 24,576 particles.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

c=1 c=2 c=4 c=8 c=16 c=32 c=64

E
x
e
c
u

ti
o
n

 T
im

e
 P

e
r 

T
im

e
s
te

p
 (

s
e

c
)

	

Execution Time vs. Replication Factor

Computation
Communication (Shift)
Communication (Reduce)

Replication Factor

(b) Hopper, 24,576 cores, 196,608 particles.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

c=1
(tree)

c=1
(no-tree)

c=2 c=4 c=8 c=16 c=32 c=64

E
x
e
c
u
ti
o
n
 T

im
e
 P

e
r 

T
im

e
s
te

p
 (

s
e
c
)

	

Execution Time vs. Replication Factor

Computation
Communication (Shift)
Communication (Reduce)

Replication Factor

(c) Intrepid, 8,192 cores, 32,768 particles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

c=1
(tree)

c=1
(no-tree)

c=2 c=4 c=8 c=16 c=32 c=64 c=128

E
x
e
c
u
ti
o
n
 T

im
e
 P

e
r 

T
im

e
s
te

p
 (

s
e
c
)

	

Execution Time vs. Replication Factor

Computation
Communication (Shift)
Communication (Reduce)

Replication Factor

(d) Intrepid, 32,768 cores, 262,144 particles.

Figure 2: The effect of the replication factor c on execution time for small and large problems on Hopper and Intrepid.
Figure 2a shows monotonically decreasing communication with increasing c, as predicted by the model. In contrast, Figure
2b shows best performance when c = 16; this is the point at which the communication pattern strikes a balance between
collective and point-to-point costs. Similar are the conclusions for Intrepid on Figures 2c and 2d.

We ran our experiments on two platforms, Hopper and
Intrepid. Hopper [18] is a 6,384 node Cray XE-6 machine lo-
cated at NERSC. It’s currently ranked #19 on the Top500 list
[19]. Each Hopper node has two 12-core, AMD MagnyCours
processors running at 2.1 GHz, yielding 24 cores per node
and 153,216 cores in total. 1 Nodes are connected in a three-
dimensional torus via the Cray Gemini interconnect. Intrepid
[20] is a 163,480 core IBM BlueGene/P machine located at
ALCF. Each Intrepid node consists of one quad-core, 850
MHz PowerPC processor connected in a three-dimensional
torus. Intrepid currently ranks #47 on the Top500 list. All
codes were developed in C using MPI.

Since Intrepid provides topology-aware partitions, we
modified the code to utilize topology-aware collectives pro-
vided by the DCMF communication layer [21]. In doing
so, we were able to fully exploit the bidirectional network

1Given Hopper has 24 cores per node, runs that saturate all cores often
have factors of 3 in them that make our choice of experimental parameters
seem odd. Powers-of-two numbers can be recovered by dividing by 3 in
most cases.

links and minimize network contention. We found that re-
placing P/c2 point-to-point shifts within the rows with P/c2

broadcasts across the rows improved performance because
the bidirectionality of the torus provides twice the bandwidth
of a point-to-point send along a single link.

Our experiments sought to understand: 1) the effect of
increased replication factors for fixed machine sizes and
problem sizes, and 2) the strong scaling performance for
all replication factors across a fixed problem size.

1) Scaling the replication factor: The model predicts
that communication cost should drop by factors between
c and c2 for increased c. In practice, we find this to be
accurate for small c. Figure 2 shows the breakdown of
communication and computation time for 24K-particle and
196K-particle simulations on 6K and 24K cores of Hopper,
respectively. When c = 1, communication costs represent
significant portions of execution time. As c increases, we
see communication costs more-than-halving until c = 16.
When c = 64 in the larger simulation, we see a greater cost
than when c = 16, even though the model predicts better



 0.5

 0.6

 0.7

 0.8

 0.9

 1

1536 3072 6144 12288 24576

R
e
la

ti
v
e
 E

ff
ic

ie
n
c
y
 v

s
. 
O

n
e
 C

o
re

Machine size (# cores)

Parallel Efficiency on Hopper

c=1
c=2
c=4
c=8
c=16
c=32
c=64
Ideal

(a) Hopper, 196,608 particles.

 0

 0.2

 0.4

 0.6

 0.8

 1

2048 4096 8192 16384 32768

R
e
la

ti
v
e
 E

ff
ic

ie
n
c
y
 v

s
. 
O

n
e
 C

o
re

Machine size (# cores)

Parallel Efficiency on Intrepid

c=1
c=2
c=4
c=8
c=16
c=32
c=64
Ideal

(b) Intrepid, 262,144 particles

Figure 3: Strong scaling performance on Hopper and Intrepid. For the given problem sizes, our algorithm achieves nearly
perfect strong scaling with the appropriate choice of replication factor.

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

1

m m

2

3

n particles

 P/c processor teams 

c

Figure 4: An illustration of Algorithm 2, the communication-
avoiding algorithm for distance-limited interactions. Labels
(1) and (2) show the initial broadcast within a team and
row-wise skewing. Label (3) shows the first of 2m/c shifts
that “wrap around” at the cutoff radius.

performance for the pure force decomposition. We believe
the communication pattern at this point best balances the
costs of collective and point-to-point communication. We
do not plot the initial broadcast cost because it is negligible.

Figures 2c and 2d show the execution time breakdown
for 32K-particle and 262K-particle simulations on 8K and
32K cores of Intrepid, respectively. Note that we plot two
runs for c = 1. The tree bar represents a run which utilized a
special network for collective operations involving the whole
partition. Alternatively, we forced the use of the regular 3D-
torus for the no-tree run. The specialized network is effective
for the naive implementation of the interaction algorithm, but
our algorithm eventually outperforms the hardware-assisted
variant by using the torus intelligently. For runs that just use
the torus, we see a 99.5% reduction in communication time.

2) Strong scaling performance: We ran additional ex-
periments to assess the strong scaling performance of the
algorithm. Figure 3 shows the data from 196K and 262K
particle runs on Hopper and Intrepid, respectively. Our
algorithm achieves nearly perfect strong scaling with the
right choice of c.

Algorithm 2 S′ = CA-1D-N-BODY(S , rc, c)

Input: The number of processors m spanned by the cutoff
distance. m implicitly includes rc via Equation 6.

Input: Replication factor c, the number of extra copies of
the particles that will fit in memory.

Input: p processors arranged in two-dimensional grid of
p/c columns (teams) and c rows.

Input: Set S of n particles divided spatially among team
leaders into local subsets St.

Output: Set S′ of n particles where every particle has
interacted with every other particle.

1: // In parallel on all processors:

2: Broadcast St from team leader to team members.
3: Copy St to exchange buffer S′t of size dnc/pe.
4: Given a kth-row processor, shift S′t by k along row

modulo the cutoff window.
5: for 2m/c steps do
6: Shift S′t by c along row modulo the cutoff window.
7: Update particles in St based on effect of S′t.
8: end for
9: Sum-reduce updates within team.

IV. FINITE CUTOFF DISTANCE

The communication-avoiding algorithm can be general-
ized to the case where particles have no effect beyond
a cutoff radius rc, or their effect can be approximated
by a constant value. Here, we describe the algorithm in
one-dimensional space, explain how it can be generalized
to higher dimensional spaces, show that communication-
optimality still holds, and give performance results from 1D
and 2D experiments on Hopper and Intrepid.

A. The 1D interaction algorithm

The algorithm for distance-limited interactions in one
dimension can be described as the algorithm for interactions
with no cutoff plus two key refinements. First, we assume



(a) (c)(b) (d)

0th layer

1st layer

2nd layer

3rd layer

Figure 5: Illustration of the communication avoiding algorithm for distance limited interactions in two dimensions. This
example shows 100 processors arranged into 25 teams and 4 replication layers. The arrows indicate the transfer of particles
between processors for different steps: (a) Broadcast among team members. (b) Initial skew. (c) Shifts during the second
iteration. (d) Shifts during the third (final) iteration.

a spatial decomposition of particles among teams, i.e. each
team is responsible for the particles in a particular region
of the simulation space. As before, we assume a uniform
particle distribution for load balance. Second, the algorithm
performs shifts modulo the cutoff distance, not the edge
of the simulation space as before. For purpose of under-
standing, we translate the cutoff radius into the number of
processors m spanned by the radius in a simulation space
of length l:

rc
l

=
mc

p
. (6)

Figure 4 illustrates the algorithm for simulations in 1D
space, and Algorithm 2 gives pseudocode.

B. Optimality of the 1D interaction algorithm

In the presence of a cutoff radius, the computational
cost along the critical path decreases relative to the all-
pairs interaction algorithm. Specifically, assuming uniform
particle distribution, the number k of necessary interactions
per particle is

k =
2rc
l
n = O

(
mc

p
n

)
(7)

and the total memory required per processor is

M = O

(
c · n

p

)
. (8)

Analysis of the communication cost along the critical
path is similar to that of the all-pairs interaction algorithm.
The initial broadcast sends O(cn/p) words to c processors
using log (c) messages, and the initial skewing sends O(1)
messages of size O(cn/p) words. This algorithm proceeds
with O(m/c) shifting steps in which each processor sends

O(1) message of O(cn/p) words, resulting in a total cost
of O(m/c) messages and O(mn/p) words. The final reduc-
tion sends O(cn/p) words in log (c) messages. The total
communication costs of the algorithm are

S1D = O
(m
c

)
, W1D = O

(
mn

p

)
.

Using equations 7 and 8, we can rewrite the costs as

S1D = O

(
nk

pM2

)
, W1D = O

(
nk

pM

)
.

These costs meet the lower bounds from equation 3, hence
the algorithm is communication-optimal for all values of
c = 1, 2, ...,m.

C. Generalization for higher dimensional spaces

As in the 1D case, we assume a spatial decomposition
of particles among processors in a grid of the same dimen-
sionality. We again add a replication dimension of length c.
Broadcasts and reductions still occur along the c dimension,
and shifts of magnitude c occur in the hyperplane perpen-
dicular to the c dimension. It is difficult to visualize shifts
occurring through multiple dimensions, so we recommend
linearizing the high-dimensional space, calculating shifts in
1D, and mapping the pattern back into the original space.
Figure 5 shows shifts through a 2D space with 25 teams
and a replication factor of 4. Communication avoidance
becomes especially important in higher dimensions because
the number of neighbors is exponential in the dimensionality
of the problem space.

D. Performance results

To assess the performance of the generalized algorithm,
we extended our codes from Section III with support for



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

c=1 c=2 c=4 c=8 c=16 c=32 c=64

E
x
e
c
u

ti
o
n

 T
im

e
 P

e
r 

T
im

e
s
te

p
 (

s
e

c
)

	

Execution Time vs. Replication Factor

Computation
Communication (Shift)
Communication (Reduce)
Communication (Re-assign)

Replication Factor

(a) 1D-cutoff, Hopper, 24,576 cores, 196,608 particles.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

c=1 c=2 c=4 c=8 c=16 c=32 c=64

E
x
e
c
u

ti
o
n

 T
im

e
 P

e
r 

T
im

e
s
te

p
 (

s
e

c
)

	

Execution Time vs. Replication Factor

Computation
Communication (Shift)
Communication (Reduce)
Communication (Re-assign)

Replication Factor

(b) 2D-cutoff, Hopper, 24,576 cores, 196,608 particles.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

c=1 c=2 c=4 c=8 c=16 c=32 c=64 c=128

E
x
e
c
u
ti
o
n
 T

im
e
 P

e
r 

T
im

e
s
te

p
 (

s
e
c
)

	

Execution Time vs. Replication Factor

Computation
Communication (Shift)
Communication (Reduce)
Communication (Re-assign)

Replication Factor

(c) 1D-cutoff, Intrepid, 32,768 cores, 262,144 particles.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

c=1 c=2 c=4 c=8 c=16 c=32 c=64

E
x
e
c
u
ti
o
n
 T

im
e
 P

e
r 

T
im

e
s
te

p
 (

s
e
c
)

	

Execution Time vs. Replication Factor

Computation
Communication (Shift)
Communication (Reduce)
Communication (Re-assign)

Replication Factor

(d) 2D-cutoff, Intrepid, 32,768 cores, 262,144 particles.

Figure 6: The effect of increased replication factors on execution time for 1D and 2D simulations with a cutoff radius.

a cutoff radius. We implemented simulations in 1D and 2D
space using a spatial decomposition and ran our experiments
on the same systems. We also assume a uniform particle dis-
tribution, which is fair in a molecular dynamics simulation
with a homogeneous environment. Furthermore, we set the
parameters of the system to be such that particle distribution
remains nearly uniform throughout the simulation. For prac-
ticality reasons, we also require that the replication factor “fit
inside” the interaction diameter (mathematically: c ≤ 2m) to
ensure all processors in the replication dimension have work
to do. We chose the cutoff radius to be 1/4 of the simulation
space to allow reasonably many choices of c. Lastly, we
did not utilize Intrepid’s topology-aware collectives because
the communication pattern did not match the interconnect
topology exactly.

1) Scaling the replication factor: We varied c for fixed
problem size and machine size to measure the benefit of
increased replication factor in 1D and 2D simulations. The
results are shown in Figure 6. The additional cost of updating
the spatial decomposition at every timestep is labeled as
reassignment time in the plot.

For small values of c, the plots show the expected decrease
in communication time. However, for large c the cost of the

reduction step grows considerably, yielding poorer overall
performance than intermediate c values. We believe this
effect is primarily caused by collectives’ inability to scale
logarithmically when communication teams reach a certain
size. Fortunately, our algorithm can be tuned to find the
replication factor that provides the best balance between
collective and point-to-point performance.

Costs due to shifting appear to stagnate after a few c
values, unlike in Section III where they approached zero. We
believe this is due to measurable load imbalance as lightly-
loaded processors must wait longer for particles to be shifted
from heavily-loaded processors. This kind of load imbalance
does not occur for interactions between all pairs because a
spatial decomposition is not required in that case.

2) Strong scaling performance: Figure 7 shows the strong
scaling performance of 1D and 2D simulations with 196K
particles on Hopper and 262K particles on Intrepid. From
the graphs we make several observations. First, the largest
available replication factor never gives best results. Second,
there is a general trend that for a given replication factor,
the algorithm exhibits sub-optimal performance on smaller
machines due to load imbalance. Lastly, although we do not
see clear benefits at small scale, the best replication of the



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

96 192 384 768 1536 3072 6144 12288 24576

R
e
la

ti
v
e
 E

ff
ic

ie
n
c
y
 v

s
. 

O
n

e
 C

o
re

Machine size (# cores)

Parallel Efficiency on Hopper

Ideal
c=64
c=16
c=4
c=1

(a) 1D-cutoff, Hopper, 196,608 particles.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

96 192 384 768 1536 3072 6144 12288 24576

R
e
la

ti
v
e
 E

ff
ic

ie
n
c
y
 v

s
. 

O
n

e
 C

o
re

Machine size (# cores)

Parallel Efficiency on Hopper

Ideal
c=64
c=16
c=4
c=1

(b) 2D-cutoff, Hopper, 196,608 particles.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2048 4096 8192 16384 32768

R
e
la

ti
v
e
 E

ff
ic

ie
n
c
y
 v

s
. 
O

n
e
 C

o
re

Machine size (# cores)

Parallel Efficiency on Intrepid

Ideal
c=64
c=16
c=4
c=1

(c) 1D-cutoff, Intrepid, 262,144 particles.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2048 4096 8192 16384 32768

R
e
la

ti
v
e
 E

ff
ic

ie
n
c
y
 v

s
. 
O

n
e
 C

o
re

Machine size (# cores)

Parallel Efficiency on Intrepid

Ideal
c=64
c=16
c=4
c=1

(d) 2D-cutoff, Intrepid, 262,144 particles.

Figure 7: Strong scaling performance of 1D and 2D simulations with cutoff radius.

communication-avoiding algorithm yields roughly double
the efficiency of a non-replicating algorithm on the largest
machine sizes (24K cores on Hopper and 32K cores on
Intrepid).

In our results, simulations with a cut-off distance exhibit
lower parallel efficiency than simulations without a cutoff.
We primarily attribute this fact to load imbalance caused by
our choice of physical domain decomposition. More specif-
ically, processors assigned to regions near the simulation
space boundary have fewer interactions to compute than
processors in the middle, leading to increased idle time
and critical path length. Secondly, we did not use topology-
aware collectives during the shift communication phase on
Intrepid; consequently, we utilize only half the bandwidth
available to the experiment in Section III because we don’t
take advantage of the bidirectionality of the torus.

V. CONCLUSIONS AND FUTURE WORK

We have presented an N-body algorithm for direct in-
teractions that uses extra memory to replicate particles
and asymptotically reduce communication. We analyzed the
lower bounds on communication, and showed that the new
algorithm is optimal in communication. We also presented

experimental analysis on tens of thousands of cores for
both BlueGene/P and Cray XE-6, which show that with
the appropriate choice of replication factor, our algorithm
achieves nearly perfect strong scaling by striking a balance
between point-to-point and collective communication costs.
One example shows a speedup of over 11.8× from com-
munication avoidance. While the benefits of communication
avoidance are best for small problems on large numbers
of cores, the absolute communication overhead for the
optimized algorithms is low, resulting in good absolute
performance.

While the theoretical analysis would suggest maximizing
the amount of replication to

√
p if memory is available, we

found this was not always optimal in practice. We therefore
leave as open the question of how to select the replication
factor c, which is typically close to the

√
p limit and can be

autotuned at runtime by trying multiple factors. Even using
the maximum value of c may be acceptable: for the all-pairs
algorithm, the best value of c differed by no more than 16%
in any experiment, and most experiments revealed less than
2% difference.

In addition to the specifics of this N-body algorithm, our
work represents an application of communication-avoidance



theory beyond numerical linear algebra. This suggests a
general strategy for communication avoidance through repli-
cation, a technique used previously to increase parallelism
or decrease synchronization [22]. We hope that our work
prompts similar analyses of other domains and inspires new
algorithms that provably minimize communication.

ACKNOWLEDGMENTS

This research used resources of the National Energy
Research Scientific Computing Center and the Argonne
Leadership Computing Facility, both supported by the Office
of Science of the U.S. Department of Energy under Contracts
No. DE-AC02-05CH11231 and DE-AC02-06CH11357, re-
spectively. The third author was supported by a Fulbright
Scholarship. The fourth author was supported by a Krell
Department of Energy Computation Science Graduate Fel-
lowship, grant number DE-FG02-97ER25308.

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Government.

REFERENCES

[1] S. Plimpton, “Fast parallel algorithms for short-range
molecular dynamics,” J. Comput. Phys., vol. 117,
no. 1, pp. 1–19, Mar. 1995. [Online]. Available:
http://dx.doi.org/10.1006/jcph.1995.1039

[2] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Mini-
mizing communication in linear algebra,” SIAM J. Mat. Anal.
Appl., vol. 32, no. 3, 2011.

[3] E. Solomonik and J. Demmel, “Communication-optimal 2.5D
matrix multiplication and LU factorization algorithms,” in
Lecture Notes in Computer Science, Euro-Par, Bordeaux,
France, Aug 2011.

[4] H. Jia-Wei and H. T. Kung, “I/O complexity: The red-blue
pebble game,” in Proceedings of the thirteenth annual ACM
symposium on Theory of computing, ser. STOC ’81. New
York, NY, USA: ACM, 1981, pp. 326–333.

[5] D. Irony, S. Toledo, and A. Tiskin, “Communication lower
bounds for distributed-memory matrix multiplication,” Jour-
nal of Parallel and Distributed Computing, vol. 64, no. 9, pp.
1017 – 1026, 2004.

[6] A. Aggarwal, A. K. Chandra, and M. Snir, “Communica-
tion complexity of PRAMs,” Theoretical Computer Science,
vol. 71, no. 1, pp. 3 – 28, 1990.

[7] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and
graph algorithms,” SIAM Journal on Computing, vol. 10,
no. 4, pp. 657–675, 1981.

[8] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and
P. Palkar, “A three-dimensional approach to parallel matrix
multiplication,” IBM J. Res. Dev., vol. 39, pp. 575–582,
September 1995.

[9] J. Berntsen, “Communication efficient matrix multiplication
on hypercubes,” Parallel Computing, vol. 12, no. 3, pp. 335
– 342, 1989.

[10] S. L. Johnsson, “Minimizing the communication time for
matrix multiplication on multiprocessors,” Parallel Comput.,
vol. 19, pp. 1235–1257, November 1993.

[11] M. Snir, “A note on n-body computations with cutoffs,”
Theory of Computing Systems, vol. 37, pp. 295–318, 2004.

[12] D. E. Shaw, “A fast, scalable method for the parallel evalua-
tion of distance-limited pairwise particle interactions,” Jour-
nal of Computational Chemistry, vol. 26, no. 13, pp. 1318–
1328, 2005.

[13] K. J. Bowers, R. O. Dror, and D. E. Shaw, “The midpoint
method for parallelization of particle simulations,” The Jour-
nal of Chemical Physics, vol. 124, no. 18, p. 184109, 2006.

[14] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kal, and K. Schulten,
“Scalable molecular dynamics with namd,” Journal of Com-
putational Chemistry, vol. 26, no. 16, pp. 1781–1802, 2005.

[15] L. V. Kale and S. Krishnan, “CHARM++: a portable concur-
rent object oriented system based on C++,” in Proceedings
of the eighth annual conference on Object-oriented program-
ming systems, languages, and applications, ser. OOPSLA ’93.
New York, NY, USA: ACM, 1993, pp. 91–108.

[16] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin,
R. H. Larson, J. K. Salmon, C. Young, B. Batson, K. J.
Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P.
Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L. Klepeis,
T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C.
Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, and
S. C. Wang, “Anton, a special-purpose machine for molecular
dynamics simulation,” in Proceedings of the 34th annual
international symposium on Computer architecture, ser. ISCA
’07. New York, NY, USA: ACM, 2007, pp. 1–12.

[17] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood,
B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes,
F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw,
“Scalable algorithms for molecular dynamics simulations on
commodity clusters,” 2006.

[18] “Hopper, NERSC’s Cray XE6 System.” [Online]. Available:
http://www.top500.org

[19] “TOP500 Supercomputer Site.” [Online]. Available:
http://www.top500.org

[20] “Intrepid Guide — Argonne Leadership Computing Facil-
ity.” [Online]. Available: https://www.alcf.anl.gov/resource-
guides/intrepid-and-surveyor-guide

[21] A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gun-
nels, “MPI collective communications on the Blue Gene/P
supercomputer: Algorithms and optimizations,” in High Per-
formance Interconnects, 2009. HOTI 2009. 17th IEEE Sym-
posium on, 2009.

[22] K. Madduri, J. Su, S. Williams, L. Oliker, S. Ethier, and
K. Yelick, “Optimization of parallel particle-to-grid interpo-
lation on leading multicore platforms,” vol. 23, no. 10, 2012.


