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Abstract—Traditional particle simulation methods are used
to calculate pairwise potentials, but some problems require 3-
body potentials that calculate over triplets of particles. A direct
calculation of 3-body interactions involves O(n3) interactions, but
has significant redundant computations that occur in a nested
loop formulation. In this paper we explore algorithms for 3-
body computations that simultaneously optimize three criteria:
computation minimization through symmetries, communication
optimality, and load balancing. We present a new 3-body al-
gorithm that is both communication and computation optimal.
Its optional replication factor, c, saves c3 in latency (number of
messages) and c2 in bandwidth (volume), with bounded load-
imbalance. We also consider the k-body case and discuss an
algorithm that is optimal if there is a cutoff distance of less
than 1/3 of the domain. The 3-body algorithm demonstrates
99% efficiency on tens of thousands of cores, showing strong
scaling properties with order of magnitude speedups over the
naı̈ve algorithm.

Keywords—parallel algorithms; communication-avoiding algo-
rithms; particle methods; n-body;

I. INTRODUCTION

Particle simulations are used in various fields such as
physics, chemistry, and material science. Traditionally one
computes just pairwise interactions between particles, but there
is increasing interest in calculations that require many-body,
especially 3-body, interactions. The parallel 3-body calculation
is a relatively unexplored problem, and most of the existing
algorithms compute direct interactions rather than a tree-based
approach as is common in the 2-body case. One shared concern
among these methods is avoiding redundant computation.
While the factor of 2 in the 2-body case (computing both the
force fij of particle i on particle j as well as fji = −fij)
is sometimes ignored, a triplet appears six times in the 3-
body O(n3) interaction space. A good algorithm should only
compute all of its related forces once, taking advantage of force
symmetry. Multiple efforts have been put into avoiding redun-
dancy and balancing work over processors, but none of these
consider the communication complexity of the algorithms.
Even though the problem is compute-intensive, communica-
tion takes time and energy and still comes into play when
scaling aggressively. Our goal is to develop algorithms that
are optimal in both computation (exploitation of symmetries)
and communication.

Here, we present two communication-avoiding algorithms
that are both computation and communication optimal, one
for all-triplets interactions and the other for interactions with

cutoff distance. We derive lower bounds for communica-
tion along the critical path and prove that both algorithms
achieve their bounds. ‘Communication-avoiding’ means they
can exploit extra memory to reduce the lower bounds; by
making c replicas, they can reduce by factors of c3 latency
(number of messages) and c2 bandwidth (number of words).
Experimental results of the all-triplets algorithms on two large
scale machines are also presented.

Our contributions are:

• Derivation of the communication lower bounds for k-
body methods (k ≥ 2) with or without cutoff.

• A new all triplets algorithm for 3-body calculations
without cutoff that is provably optimal in computa-
tion and communication and has provable less load
imbalance than previous work.

• A new class of algorithms for any k-body interaction
(k ≥ 2) with cutoff, where the cutoff limits interac-
tions to less than 1/3 of the domain. These algorithms
are also provably optimal in communication and com-
putation.

• Application of replication to further avoid communi-
cation asymptotically.

• An implementation of the 3-body algorithm for mas-
sively parallel machines, including support for hybrid
(shared and distributed memory) parallelism.

• Performance results showing near perfect strong scal-
ing on tens of thousands of cores and the tradeoff
between communication and load imbalance of the
communication-avoiding technique

This paper is organized as follows. Section II describes
many-body interactions in Molecular Dynamics, previous 3-
body algorithms, and derives communication lower bounds for
the all-triplets problem. Section III gives the all-triplets algo-
rithm and extends it to support replication. Section IV shows
performance results of the all-triplets algorithm. Section V
adds cutoff, generalizes to any k-body interaction, and proves
the communication lower bounds and optimality. Section VI
concludes and discusses future work.

II. BACKGROUND AND PREVIOUS WORK

A. Many-Body Interactions in Molecular Dynamics

Molecular Dynamics (MD) calculations compute forces
acting on particles to simulate their movements over time. TheSC14, November 16-21, 2014, New Orleans
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(a) Tetrahedron (i < j < k)
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(b) Slice Symmetric Distribution
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(c) Volume Symmetric Distribution

Fig. 1: Illustration of the elements to compute in the force cubes in Li et al. [1], [2], [3] and Sumanth et al. [4] (n = 24 particles)

total force on a particle i is computed from the equation,

fi = −∇(φ1(i) +
∑
j

φ2(i, j) +
∑
j,k

φ3(i, j, k) + . . . ), (1)

where∇ is the gradient operator and φk is the k-body potential
energy function. The effect of k-body potentials is generally
lower as k increases, so the 2-body potentials have the largest
contribution. Although MD applications have traditionally fo-
cused on pairwise interactions, there is interest more recently
on force potentials involving many-body interactions.

Many-body potentials are significant in both atomic sys-
tems and molecular systems [5]. They enable more accurate
modeling of specific materials such as metals and ceramics [6].
4-body potentials are used in protein folding [7], [8]. 3-body
potentials are the most commonly used after 2-body potentials,
and are required to capture some properties such as phase
equilibria in noble gases [9] and the second virial coefficient
in systems such as water [10], [11].

The parallel 3-body problem poses a complicated sym-
metry challenge. It is trivial to exploit the force symmetry
fij = −fji in the 2-body problem, and the cost of ignoring
symmetry is only a factor of two. However, in the 3-body
problem, there are n(n− 1)(n− 2)/6 unique triplets, so there
are roughly 6 times more triplet interactions if we do not
eliminate redundant triplets. At O(n3) scale, this is costly. It
is even worse for larger values of k as the symmetry factor
grows with k!. As described in the next section, previous work
focused on conditions to avoid redundant triplets and work
partitioning to maintain load balance; we add the additional
constraint of minimizing communication.

B. 3-Body Algorithms

There are two approaches to computing 2-body interac-
tions: direct and approximate. Direct approaches compute all
required O(n2) interactions. Approximate or tree-based ap-
proaches treat a group of sufficiently far away particles as one
big particle and compute significantly fewer interactions. For
example, the Barnes-Hut algorithm [12] computes O(n log n)
interactions and the Fast Multipole Method (FMM) [13] com-
putes O(n) interactions. Likewise, there are existing 3-body
algorithms based on both direct and approximate approaches.

The work on the 3-body problem has begun rather recently.
Nakano et al. [14] proposed a domain decomposition algorithm
with multiple-time-step (MTS) to compute 2- and 3-body
forces with cutoff distance in 1993. They used a separable 3-
body calculation, i.e., decomposing a 3-body force calculation
(i, j, k) to two 2-body interactions (i, j) and (i, k).

Li et al. [1], [2], [3] extended the 2-body’s n-by-n force
matrix to an n-by-n-by-n force cube, as shown in Figure 1a.
The goal is to compute only unique triplets (i, j, k) where
i < j < k, shown in red circles forming a tetrahedron.
They presented four ways to assign work to processors:
Force, Cyclic, Balanced Cyclic, and Precise Decompositions.
Force Decomposition (FD) [2] partitions the force cube into
subcubes, prunes the redundant subcubes from the job list, then
assigns each subcube to a processor. Since not all subcubes
have the same computation load – subcubes (i, j, k) where
i 6= j 6= k have the most load and i = j = k the least, – the
FD algorithm suffered the most load imbalance among all the
algorithms they considered.

Cyclic Decomposition (CD) [1], [2], [3] slices the force
cube into n planes and assigns planes cyclically to processors
(processor r gets planes r, r + p, r + 2p, etc.). It still incurs a
slight load imbalance as processors that are assigned the earlier
planes always have less load than processors that get later
planes. This led to Balanced Cyclic Decomposition (BD) [2],
[3], which cyclically assigns odd planes first, then cyclically
assigns even planes in reverse order to balance out excess load.

Precise decomposition (PD) [2] counts exactly how many
elements are to be computed in each plane and assigns consec-
utive planes that have closest to perfect load to each processor.
All of the latter three algorithms performed marginally better
than FD, with PD slightly better than the other two. Still, none
of them achieved high parallel efficiency. PD, BD, and CD
were at 50% parallel efficiency while FD was at 40% on a
system with only 35 processors.

Also based on the force cube, Sumanth et al. [4] exploited
the symmetry to transform the force cube so that there is
an equal number of unique elements to compute in each
plane (Slice Symmetric) or volume space (Volume Symmetric).
Transforming means determining if an element should be
computed based on arithmetic conditions of its index (i, j, k).
Figures 1b and 1c illustrate Slice Symmetric and Volume



Symmetric transformations. Circles indicate force elements
to be computed. Colors are for illustration purpose only.
This way, the load is optimally balanced no matter how the
planes are assigned to the processors as long as they get the
same number of planes or subcubes, and thus they can be
assigned consecutively. Nevertheless, very few performance
results are presented, most of which focused on load balance.
The communication is not likely to scale well given that each
plane involves all particles. The algorithms from both Li et
al. and Sumanth et al. are O(n3) direct-interactions methods.
They stated that cutoff distance can be supported but did not
provide details.

Recently, Kunaseth et al. [15] proposed a systematic way to
compute k-body interactions with cutoff (k-tuple computation
in their terminology). Their Shift-Collapse algorithm uses a
cell-based method, starting with iteratively generating all the
cell domains the k-tuple could be in for each cell, then pruning
out the cells that will contribute to redundant k-tuples. Despite
the excessive work of generating all possible k-level neighbor
cell combinations, their algorithm performed very well at large
scale.

By extending their existing multi-tree methods framework
for generalized N-body problems [16] in statistics, Lee et al.
introduced for the first time approximation algorithms to com-
pute any k-body interactions called the Multibody Multipole
Methods [17]. The algorithms store particles in a k-d tree
and only support multibody potentials that can be factorized
as products of functions of pairwise Euclidean distances. An
extension of FMM-like algorithms [13] is first discussed. They
derived far- and near-field expansions for 3-body potentials
but not for general multibody case. Instead, they opted for
a simpler, nondeterministic algorithm with only a monopole
approximation for monotonically decreasing k-body potentials.
The algorithm uses Monte Carlo sampling based on the central
limit theorem to guarantee the potential sum is within an
error margin with probability 1 − α. The benefits of both
algorithms are most prominent in clustered particle distribution
in experiment. At 10,000 particles on a single core, the
deterministic approach (FMM-like) achieved 20 times speedup
against a naive algorithm and the Monte Carlo approach, with
90% probability guarantee that the relative error will be less
than 0.1, gained a huge speedup of 1,000 times. All work is
sequential. They did not provide parallelization but mentioned
that it is underway.

C. Communication Lower Bounds

Interprocessor communication is more costly than compu-
tation in both time and energy and is often a major obstacle
to application scalability. Overlapping with computation can
only provide constant (up to 2×) speedup and does not help
with energy consumption. As the gap between communication
and computation time continues to grow [18], along with
the concerns for energy [19], it is important to minimize
communication.

Early work on communication lower bounds includes Hong
and Kung’s pebble game [20] for sequential algorithms and
Irony et al.’s geometric approach for both sequential and
parallel matrix multiplication [21], where they also consider
data replication. Ballard et al. [22] extended the lower bounds

to cover all direct-linear-algebra-like applications. Recently,
Christ et al. [23] gave generalized bounds that cover general
loop nests that reference arrays, subject to constraints on
the type of subscripts, but general enough to include the
k-body problem discussed here, which we explain further
below. Solomonik et al. [24] explored tradeoffs between these
communication and computation bounds in linear algebra
applications with dependencies.

In 2013, Driscoll et al. [25] proved the communication
lower bounds for the 2-body problem with and without cutoff
and provided algorithms that use replication to avoid commu-
nication and successfully achieves the bounds. However, they
did not utilize force symmetry which would save a factor of
two in computation time.

We follow the framework in [23] to derive the lower bounds
for the 3-body problem. If Z is the total number of arithmetic
operations a processor has to perform to solve a problem
and F is the maximum number of useful operations that can
be performed using M words in memory, the lower bounds
of the total number of messages S (latency), and words W
(bandwidth) a processor must move along the critical path are:

S = Ω

(
Z

F

)
, W = Ω

(
Z ·M
F

)
. (2)

Let n be the total number of particles in the system and p be
the number of processors. The direct 3-body problem requires
O(n3) interactions, so each processor has to do Z = O(n3/p)
work. If each processor stores M words, it can perform at
most F = O(M3) useful work. Thus, the lower bounds for
the 3-body problem are:

S = Ω

(
n3/p

M3

)
, W = Ω

(
n3/p

M2

)
. (3)

Normally each processor stores n/p particles. We would
like to know how the bounds will change if we store c times
more particles, so we write M in the form cn/p:

S = Ω

(
p2

c3

)
, W = Ω

(np
c2

)
. (4)

We call c the replication factor because each group of cn/p
particles has c copies among all processors. Since c is in the
denominators of both S and W , this implies that increasing
c decreases the lower bounds in both latency and bandwidth.
However, there is a limit to c. Regardless of the algorithm, each
processor has to send at least O(1) messages, e.g., sending out
results. Setting S = O(1), we have the upper bound:

c ≤ p2/3. (5)

Substituting this back to Equation (4) results in the memory-
independent lower bounds:

S = Ω (1) , W = Ω

(
n

p1/3

)
. (6)



Algorithm 1 NAÏVE ALL-TRIPLETS ALGORITHM

1: Input Prank in buffer b0, with all forces reset to 0.
2: Output The same n/p particles updated in-place.
3: Copy b0 to b1 and b2.
4: for p steps do
5: for p steps do
6: if have not processed this triplet then
7: Calculate all interactions between three buffers
8: end if
9: shift right(b2)

10: end for
11: shift right(b1)
12: end for
13: Send particles in each buffer back to the owner processor
14: Receive up to 3 copies of my own particles
15: Sum the forces over all 3 copies
16: Move my particles according to their calculated forces

III. ALGORITHM

In this section, we present a naı̈ve approach to computing
all-triplets interactions, then refine it to only form unique
triplets. In addition, we also present two variants of the all-
unique-triplets algorithm that improve the communication cost.
The first variant saves a constant factor of communication,
while the second variant is the communication avoiding algo-
rithm which replicates particles to reduce the communication
asymptotically.

Previous work [1], [2], [4] on long-range interactions
partitions work geometrically based on the force cube. Our
approach can instead be seen as extending the all-pairs al-
gorithm in [25] or the systolic/ring algorithm in [26] by
adding an additional buffer. Denote the set of all particles
in the system with P and the ith of p processors by proci.
We divide P into p equal disjoint subsets of n/p particles,
P0, P1, . . . , Pp−1. Processor proci will own and be in charge of
updating the particles in Pi, i.e., keeping track of forces applied
to them and moving them accordingly in each timestep. Each
processor has three buffers, b0, b1, and b2, to hold the particle
subsets (Pi, Pj , Pk), 0 ≤ i, j, k < p.1 Particle interactions are
computed by forming all triplets using one particle from each
buffer, calculating forces for all three particles in each triplet
at once, and accumulating the forces within each particle.
The algorithm alternates between computing interactions and
exchanging buffers with other processors. The problem now
turns into how to move particles around to cover all triplets of
the particle subsets P0, P1, . . . , Pp−1.

A. Naı̈ve all-triplets algorithm

We arrange the processors into a virtual ring with left
and right neighbors of proci being proci−1 and proci+1,
respectively. Cyclic indexing is used so that proci = proci%p.
Let the shift right(bi) operation pass the particles in buffer bi
to the right neighbor’s bi and replace them with the ones from
the left neighbor’s bi. If each processor shifts b2 to the right
p2 times, shifts b1 every pth time b2 is shifted, and computes

1This is not to be confused with replication. There are always 3 buffers
for the 3-body problem and we treat this factor of 3 as a constant, i.e., each
processor stores O(n/p) and does not replicate.

interactions every time a buffer is shifted if they have not
already been computed, we will get all necessary interactions
from all possible triplets, albeit at the cost of abundant shifting.
The pseudocode for one timestep is shown in Algorithm 1 in
a SPMD fashion with variable rank denoting the processor’s
rank.

Despite its inefficiency, it is worth noting that Algorithm 1
is still asymptotically communication optimal. It shifts O(n/p)
words for O(p2) rounds with at most 2 messages per round,
therefore it sends O(p2) messages and uses O(np) bandwidth,
achieving the bounds in equation (4) (c = 1).

B. All-unique-triplets algorithm

The shift operation has a nice uniqueness property. Pro-
vided that all processors start with different triplets of particle
subsets in their buffers, they will still have different triplets
from each other after a series of shifts on any buffer. Mathe-
matically, proci has (Pi+x, Pi+y, Pi+z) where x, y, z ∈ Z and
0 ≤ x, y, z < p. The only exception is when 3 | p and x, y, z
are 0+q, p/3+q, and 2p/3+q (in any order), where q ∈ Z is
a constant offset. Algorithm 2 changes the shifting sequence in
Algorithm 1 so that any triplet (Pi, Pj , Pk) only occurs once
during the whole shifting process.

The new shifting scheme is surprisingly simple: pick a
buffer, shift it p times, shift another buffer p − 3 times, shift
the last buffer p − 6 times, then back to shifting the first
buffer picked p − 9 times, keep picking buffers in a round-
robin manner and shift until the number of times to shift is
p%3. If p is a multiple of 3, one additional round is required.

Figure 2 shows the complete system status of the algorithm
for p = 9 processors. Nine column groups on the right side
represents the nine processors. The three columns in each
group list what particle subsets (the number i of Pi) are in
b0, b1, and b2, respectively. On the left are boxes and dashes

    012345678 
 1: -------- 000 111 222 333 444 555 666 777 888   
 2: ------- 008 110 221 332 443 554 665 776 887  
 3: ------- 007 118 220 331 442 553 664 775 886  
 4: ------- 006 117 228 330 441 552 663 774 885  
 5: ------- 005 116 227 338 440 551 662 773 884  
 6: ------- 004 115 226 337 448 550 661 772 883  
 7: ------- 003 114 225 336 447 558 660 771 882  
 8: ------- 002 113 224 335 446 557 668 770 881  
 9: ------- 001 112 223 334 445 556 667 778 880  
  
10: ------ 801 012 123 234 345 456 567 678 780  
11: ------ 701 812 023 134 245 356 467 578 680  
12: ------ 601 712 823 034 145 256 367 478 580  
13: ------ 501 612 723 834 045 156 267 378 480  
14: ------ 401 512 623 734 845 056 167 278 380  
15: ------ 301 412 523 634 745 856 067 178 280  
  
16: ------ 381 402 513 624 735 846 057 168 270  
17: ------ 371 482 503 614 725 836 047 158 260  
18: ------ 361 472 583 604 715 826 037 148 250  
  
19: ------ 360 471 582 603 714 825 036 147 258 
  

9 lines 

6 lines 

3 lines 

Fig. 2: Illustration of the all-unique-triplets algorithm. Each
line shows what particle subsets are in what buffers in each
round. In the first nine steps, the red and green boxes are both
in processor 0.



Algorithm 2 ALL-UNIQUE-TRIPLETS ALGORITHM

1: Input Prank in buffer b0, with all forces reset to 0.
2: Output The same n/p particles updated in-place.
3: i← 2 // The 2nd buffer is picked
4: Copy b0 to b1 and b2.
5: for s ∈ {p, p− 3, p− 6, ..., p%3} do
6: for s steps do
7: if not the first step or s 6= p then
8: shift right(bi)
9: end if

10: Calculate all interactions between three buffers
11: end for
12: i← (i+ 1)%3
13: end for
14: if 3 | p then // Special case: additional round
15: shift right(bi)
16: Calculate one third of the interactions based on b rankp/3 c
17: end if
18: Send particles in each buffer back to the owner processors
19: Receive up to 3 copies of my own particles
20: Sum the forces over all 3 copies
21: Move my particles according to their calculated forces

depicting (Pi, Pj , Pk) that are in buffers b0, b1, and b2 of
proc0. Red, green, and blue boxes represent b0, b1, and b2.
Dash means not in the buffer. This helps illustrate the offset
patterns (x, y, z) of the particle subsets that all processors are
forming.

In the first line, each processor calculates interactions
between its own particles. In lines 2-9, it calculates interactions
between two of its own particles and those of successive left
neighbors, starting with the immediate left and moving further
left cyclically until reaching its right neighbor. Then it switches
to shifting the red buffer (b0) to avoid getting a repeat offset
pattern. During the next 9− 3 = 6 lines, interactions between
itself and its right neighbor are calculated with the moving
buffer, starting from its left neighbor and stopping short before
reaching the right neighbor to avoid getting the same offset
pattern as line 10 (recall that the permutation does not matter).

Then, the green buffer is shifted 3 times to compute
interactions of particle subsets that are at least one neighbor
apart. Again, it has to stop at line 18 or it will generate the
same offset patterns as line 16. Finally, the blue buffer is
shifted to cover the pattern with equally spaced boxes, which
is the special case when p is divisible by 3. Notice that proci
has the same triplet of particle subsets as those of proci+p/3
and proci+2p/3. To maintain load balance, let each third of
the processors calculate each third of the interactions in this
case. (proci calculates the b i

p/3c
th third of interactions.) After

computing all interactions, the particles are sent back to their
owner processors, which will combine all interactions and
update their positions.

C. Correctness

Here we provide formal proof that the algorithm does
generate every unique triplet of particle subsets P0, P1, . . . , Pp,
and that no redundancy occurs apart from the special case
when 3 | p.

Lemma 3.1: There are p−3d offset patterns (x, y, z) with
two boxes being d positions apart and the last box being at
least d away from the other two.

Proof: Let us put the first box at position 0, the second
box at position d, then the last box can be from position 2d to
p− 1− d because any position greater than that it will be less
than d away from the first box. There are (p−1−d)−2d+1 =
p− 3d positions, therefore there are p− 3d patterns.

Lemma 3.2: The offset patterns generated in the algorithm
create no redundant triplet apart from the exceptional case.

Proof: Notice that the algorithm generates all offset
patterns following the proof in Lemma 3.1, starting from d = 0
to d = bp/3c. Since we already excluded the special case, no
redundancy within an offset pattern can occur. Any redundancy
would be from getting the same offset pattern again in the
process. Assume a redundant offset pattern occurs at distance
d, it means at least one of the previously generated patterns
has at least one pair of boxes with distance d from each other,
which is not possible by construction.

Lemma 3.3: The algorithm generates all unique triplets.

Proof: We start by counting the number of box patterns
generated by the algorithm. Let q and r be the quotient and
remainder of p/3, so p = 3q + r where q = bp/3c and r ∈
{0, 1, 2}.

q∑
d=1

(p− 3d) = pq − 3q(q + 1)

2

= p

(
p− r

3

)
− 1

2
· (p− r)

(
p− r

3
+ 1

)
=

1

6
· (p− r)(p+ r − 3)

=


p2 − 3p

6
if 3 | p

(p− 1)(p− 2)

6
otherwise

Now we count how many lines it takes to write all unique
triplets in p columns,(

p

3

)
/p =

(p− 1)(p− 2)

6
=
p2 − 3p+ 2

6
,

which matches the number of lines the algorithm produces ex-
actly when 3 - p and is 1/3 more otherwise. This corresponds
to the one extra line in the algorithm, which also produces
only one third of a line of unique triplets. Since all triplets
generated beforehand are unique, the proof is complete.

D. Computation Optimality

There are two kinds of computation optimality we are
looking for: avoiding non-redundant computation and ensuring
load balance. Lemma 3.2 indicates that no triplets are repeated
and therefore proves the first point.

There are three possible workload numbers depending on
the offset pattern. Let m = n/p be the number of particles each
processor owns. If all three buffers contain same particle parts,
e.g., offset pattern 000, the load is

(
m
3

)
. If two buffers have

same particle parts and the other is different, e.g., offset pattern



Algorithm 3 EMBEDDED ALGORITHM

1: Input Prank in buffer b1, with all forces reset to 0.
2: Output The same n/p particles updated in-place.
3: i← 0 // Start from the 0th buffer
4: Copy particles from my left neighbor to b0.
5: Copy particles from my right neighbor to b2.
6: for s ∈ {p− 3, p− 6, ..., p%3} do
7: for s steps do
8: if not the first step or s 6= p then
9: shift right(bi)

10: else
11: Calculate all (b1, b1, b1) interactions
12: Calculate all (b1, b1, b2) interactions
13: Calculate all (b0, b0, b2) interactions
14: end if
15: if s = p− 3 then
16: Calculate all (b0, b1, b1) interactions
17: end if
18: Calculate all interactions between three buffers
19: end for
20: i← (i+ 1)%3
21: end for
22: if 3 | p then // Special case: additional round
23: shift right(bi)
24: Calculate one third of the interactions based on b rankp/3 c
25: end if
26: Send particles in each buffer back to the owner processor
27: Receive up to 3 copies of my own particles
28: Sum the forces over all 3 copies
29: Move my particles according to their calculated forces

001, the load is m
(
m
2

)
. Otherwise, the load is m3. However,

since all processors are always working on the same offset
pattern, the load will always be perfectly balanced (assuming
n is a multiple of p for simplicity).

E. Communication Optimality

The algorithm sends a message each round for
∑q

d=1(p−
3d) = O(p2) rounds, therefore a total of O(p2) messages.
Each message contains n/p words, so the bandwidth used is
O(p2 · n/p) = O(np). These costs match the lower bounds
derived in equation (4) with c = 1 (no replication, M = 1·n/p)
so the algorithm is communication optimal. Still, the bounds
only indicate optimality in an asymptotic sense. The algorithm
can save at least a constant factor more; we can calculate the
case where more than one particle is from the same particle
subset without really having to have them in multiple buffers.
These computations can be embedded into some other rounds.

Algorithm 3 outlines one of the numerous ways to do
so. The only change is to skip the first p rounds in Algo-
rithm 2 and do more computation at some specific rounds.
To be more precise, each processor now starts with particles
from its left neighbor, itself, and right neighbor in its three
buffers instead of all particles from itself. It still alternates
between interacting and shifting as before, but the number
of times shifted starts from p − 3. Extra calculations are
performed in the first p − 3 rounds. For example, let us
follow the interactions of the 0th particle parts. In the first
round interactions are computed on these combinations of

buffers: (b1, b1, b1), (b1, b1, b2), (b0, b0, b2), and (b0, b1.b1), in
addition to the usual (b0, b1, b2), to get interactions of offset
patterns 000, 001, 002, and 800. Offset patterns 700 to 300
are computed in the next p-4 rounds from the (b0, b1, b1)
interactions. See lines 10-19 of Figure 2 for an illustration
of the full algorithm.

At this point, the algorithm appears to also be
communication-optimal in a non-asymptotic sense. Each pro-
cessor sends only a message every round for the least number
of rounds possible, and utilizes all particles in each message.

F. Incorporating 1- and 2-body interactions

For simplicity, most previous 3-body algorithms compute
3-body potentials separately from those of 1- and 2-body
potentials because the work is partitioned differently. With our
approach, 1- and 2-body potentials can be computed together
with 3-body the same way we ‘embed’ the first p rounds
of Algorithm 2 into Algorithm 3 and the load will still be
perfectly balanced without any extra effort.

G. Communication-Avoiding All-Triplets Algorithm

This section demonstrates the application of the
communication-avoiding (CA) technique to Algorithm 3.
The main concept is to make each processor store more
particles and cooperate on computing interactions with other
processors who also have the same particle subsets.

Let us store c times more particles and arrange p processors
logically into a p/c-by-c 2D torus instead of a p-ring. We
divide particles into p/c equal subsets of cn/p particles,
P0, P1, . . . , Pp/c−1, and let processors in the same column
own the same particle parts and cooperate on computing
forces and updating them as a team. The communication-
avoiding algorithm behaves similarly to Algorithm 3 with p/c
processors; the only difference is that it divides all the rounds
(lines in Figure 2) among processors in the same team, then
performs a reduction on particles inside the teams first before
sending particles back to owner processor teams.

Not all rounds have the same computation costs so round
distribution has to be done wisely to avoid severe load imbal-
ance. Currently, they are partitioned into consecutive rounds
with accumulated load closest to the perfect load. Equation (7)
predicts the cost to compute the ith round. Again, it is trivial
to support 1- and 2-body computation within the algorithm by
updating the cost equation accordingly.

cost =


m3 + 3m

(
m
2

)
+
(
m
3

)
if i = 0

m3 +m
(
m
2

)
if 0 < i < p/c− 3

m3/3 if last round and 3 | p
m3 otherwise

(7)

The high-level algorithm is shown in Algorithm 4. The
predict pos function is introduced. It takes processor’s
row id (rank within team) as an input and indicates for
each processor what rounds in the absolute round number
of Algorithm 3 it should compute and what particle subsets
should be in each buffer at the start. The processor then handles



Algorithm 4 CA ALL-TRIPLETS ALGORITHM

1: Input My own cn/p particles ∈ Pcol id in buffer b0.
2: Output The same cn/p particles updated in-place.
3: (i, srcs, start, end)← predict pos(row id)
4: for j ∈ {0, 1, 2} do
5: Put Psrcsj into bj .
6: end for
7: for s ∈ [start, end) do
8: if not the first step or s 6= p then
9: shift right(bi)

10: end if
11: Calculate interactions according to the sth round.
12: i← (i+ 1)%3
13: end for
14: Do a sum-reduction inside my processor team.
15: Send particles in each buffer back to the owner processor
16: Receive up to 3 copies of my own particles
17: Sum the forces over all 3 copies
18: Move my particles according to their calculated forces

the calculation of each round the same way as Algorithm 3
would.

Figure 2 can be used for illustration again, this time for 36
processors with replication factor c = 4. Processors are divided
into 9 teams, resulting in total of 10 rounds of interactions
(lines 10-19). According to equation (7), processors in rows 0,
1, 2, and 3 will compute lines 10-11, 12-13, 14-15, and 16-19,
respectively. Then processors in the same team do a column
reduction to get total interactions computed by all processors in
the team before sending particles back to their owners, which
will proceed to update them as usual.

The overall communication is now carried in two dimen-
sions. When processors separately calculate their share of
interactions in the team, they only need to shift horizontally
in a ring as before. The additional direction comes from the
column reduction at the end where team members need to
communicate vertically. Regarding communication costs, there
are p/c columns so there will be O(p2/c2) total rounds.
Dividing the rounds to c groups, each processor does ap-
proximately O(p2/c3) rounds. A message is sent per round,
so O(p2/c3) messages are sent during shifting phases. Only
O(log c) messages are required for column reduction so we can
consider total number of messages sent to be just O(p2/c3).
Each message is of size cn/p, therefore the bandwidth used
is O(p2/c3) · cn/p = O(np/c2). Since the costs match the
lower bounds in (4), we conclude the communication-avoiding
algorithm is communication optimal.

There is a constraint on the replication factor c. If there
are more processors per team than the number of rounds
to compute, then some processor rows will be idle and the
computation efficiency will decrease. Hence, we want

c ≤
(
p/c

3

)
÷ (p/c)

6c3 ≤ (p− c)(p− 2c). (8)

Any c that satisfies inequality (8) guarantees that all processor
rows are utilized. Explicit solution of c is omitted due to its
length and complexity. Simplifying inequality (8) to c3 ≤ p2,

we get the asymptotic upper bound of c,

c = O(p2/3), (9)

which is consistent with the upper bound in Equation (5).

IV. PERFORMANCE RESULTS

As a proof of concept, we implemented Algorithm 4 with
C MPI. A particle has three-dimensional double-precision
coordinates and is of size 80 bytes. The Axilrod-Teller po-
tential [27] is used for 3-body interactions. We exploited the
force symmetry fijk = fikj and calculate all forces related
to all three particles in a triplet at once (fijk, fjik, and fkij).
We did not do communication overlap since we wanted ex-
plicit communication time to fully measure the effect of the
algorithm and because it is also a good indicator of energy
usage. The correctness verification was done by comparing
the algorithm’s outputs to those of sequential program and
confirming that the difference was no greater than a threshold
relative to n and p.

The program was benchmarked on two platforms with dif-
ferent network topology, Mira at Argonne Leadership Comput-
ing Facility (ALCF) and Edison at National Energy Research
Scientific Computing Center (NERSC); Mira is a 10 PFLOPS
IBM Blue Gene/Q supercomputer with a 5D torus network
and topology-aware task mapping. There are 49,152 compute
nodes, each has a 16-core PowerPC A2 1.6GHz processor
with 4 hardware threads and 16 GB of memory; Edison is a
2.57 PFLOPS Cray XC30 supercomputer consisting of 5,576
compute nodes. Each node is equipped with 2 sockets of 12-
core Intel Ivy Bridge processor at 2.4GHz and 64 GB memory.
The machine has Cray Aries interconnection with Dragonfly
topology.

While we used flat MPI with one MPI process per core on
Cray XC30, we implemented hybrid MPI/OpenMP version for
Blue Gene/Q to fully utilize its 4 hardware threads per core.
Using one MPI process per core, we ran 1, 2, and 4 OpenMP
threads per MPI process and selected the best results.

A. Effects of replication

Figure 3 shows time breakdowns per timestep of the pro-
gram as we vary the replication factor c. The green, blue, red,
yellow, and purple bars are the computation, setup, shifting,
idle, and allreduce times, respectively. Setup time is the time
to load required particle subsets to buffers at the beginning of
the timestep and the time to send particles back to their owners
at the end of the timestep combined. Idle time is the average
time each processor has to wait for its teammates to reach the
reduction point. Allreduce time is the reduction time among
column teams.

Figure 3a and 3b are small scale results – 8K particles
on 1K cores on Blue Gene/Q and 6K particles on 1.5K cores
on Cray XC30. Figure 3c and 3d are large scale results –
16K particles on 8K cores on Blue Gene/Q and the extreme
case, 24K particles on 24K cores on Cray XC30. All four
graphs demonstrate same decreasing trend in shifting time, i.e.,
between 4 to 8 times reduction as c doubles. This is consistent
with the bounds in equation (4) which says the algorithm can
save factors of c3 in messages and c2 in bandwidth.
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(a) Blue Gene/Q, 1,024 cores, 8,192 particles. (8 particles per core)
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(b) Cray XC30, 1,536 cores, 6,144 particles. (4 particles per core)
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(c) Blue Gene/Q, 8,192 cores, 16,384 particles. (2 particles per core)
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(d) Cray XC30, 24,576 cores, 24,576 particles. (1 particle per core)

Fig. 3: Time breakdown for each replication factor on Blue Gene/Q and Cray XC30. All graphs illustrate the same decreasing
trend in shifting time. The setup time is the cost to get desired particles into the buffers at the beginning and then sending
the interacted particles back to the owner processor at the end of each timestep. The blocking time is due to load imbalance
introduced when replicating. Not shown is the slightly increasing trend in reduction time happening at the end of each timestep.
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(a) Blue Gene/Q, 16,384 particles

 0

 0.2

 0.4

 0.6

 0.8

 1

1536 3072 6144 12288 24576

R
e
la

ti
v
e
 E

ffi
ci

e
n
cy

 v
s.

 O
n
e
 C

o
re

Machine size (# cores)

c=1
c=2
c=4
c=8
c=16
c=32
c=64
c=128
c=256
Ideal

(b) Cray XC30, 24,576 particles.

Fig. 4: Strong scaling on Blue Gene/Q and Cray XC30. Larger c’s perform better as the number of cores increases, vice versa
for smaller c’s. Some large c’s are available only with sufficiently many cores.



Up to 99.98% reduction in communication time, idle time
included, is observed in the experiment. Maximum overall
speedup occurs at the extreme scale at one particle per core,
22.13× on 16K cores on Blue Gene/Q (breakdown graph not
shown) and 41.85× on 24K cores on Cray XC30.

Computation times are mostly equal as expected. For Blue
Gene/Q, the computation time where c ≤ 4 is significantly
larger than others because each thread has too little work to
do. As c increases, there are more interactions to compute
per thread so the computation times are equal from c > 4.
This shows that replication also helps maintain computation
efficiency.

Idle time indicates load imbalance. It increases with c
because storing more particles means more interactions per
round and also less rounds to distribute among the processor
rows (a.k.a. team members). Load balance is harder to maintain
at coarser grain. However, this imbalance can be predicted and
thus avoided since the work partitioning is static and does not
depend on input data.

B. Scalability

Figure 4 shows strong scaling on Blue Gene/Q and Cray
XC30, with 16K and 24K particles, respectively. The y-axis is
relative efficiency compared to one node, which is estimated
from running the program on one node for 2,048 and 3,072
particles on Blue Gene/Q and Cray XC30, respectively. The
red line at 1 indicates ideal efficiency and other lines are
efficiencies for each replication factor c from 1 to 256. The
benchmark achieved perfect strong scaling at 99% efficiency
for all machine sizes on both machines with the best c.

In general, larger c’s perform better than smaller c’s with
more cores. Some replication factors are only available with
sufficiently many cores.

V. EXTENSION FOR CUTOFF DISTANCE

This section extends the all-triplets algorithm to support
a cutoff distance. Unlike pairwise interactions in which there
is only one obvious way to apply the cutoff distance rc, it is
more complicated in the 3-body case. There have been various
ways of applying cutoff distance to 3-body interactions, from
triplets in which at least a pair of particles are less than rc
apart [28], [15], triplets where all particles are less than rc
apart [29], to triplets where the sum of all distances from the
center of mass is less than rc [11], etc. We opted to follow
the second approach where all particles have to be less than rc
from each other because the first approach does not preserve
Newton’s third law [29] and because of its simplicity.

This cutoff algorithm can handle any k-body interactions
(k ≥ 2). Let the problem space be 3-dimensional and have
periodic boundary conditions. We use domain decomposition
and arrange p processors into a p1/3× p1/3× p1/3 torus, map
them to the simulation space, and let them own particles in
their range. Let dim be the number of processor boxes in
one dimension; dim = p1/3 in 3-dimensional case. Assume
that the cutoff distance rc is no less than a processor box
width but smaller than one third of the simulation box width
(1 ≤ bc < dim/3, where bc is the number of processors that
rc spans). Using bold letters to denote vectors, let

-1,-1 -1,0 -1,1 -1,2 -1,-2 

0,-1 0,0 0,1 0,2 0,-2 

1,-1 1,0 1,1 1,2 1,-2 

2,-1 2,0 2,1 2,2 2,-2 

-2,-1 -2,0 -2,1 -2,2 -2,-2 

Fig. 5: A small system in 2-dimensional space with 49
processors arranged into 7 × 7 grid and bc = 2. Cutoff
range of proc(1,1) (highlighted in dark blue) is shown in light
blue. Written inside each box are the relative coordinates with
respect to position (1, 1).

• U = {(x, y, z) ∈ Z3 | 0 ≤ x, y, z < dim}
• r ∈ U for rank r of procr,

• i1:k be a short notation for i1, ..., ik, for all ij ∈ U,

• x ◦ y = min(|x− y|, dim− |x− y|)
(periodic distance of x and y, 0 ≤ x, y,< dim ),

• u ◦ v = (u0 ◦ v0, u1 ◦ v1, u2 ◦ v2)
(periodic distance vector of u and v, u,v ∈ U ),

• u ≤ x if uj ≤ x ∀j, 0 ≤ j < q for a q-vector u,

• w(r) = {i ∈ U | i◦r ≤ bc} (cutoff window of procr),

• w(i1:k) = w(i1) ∩ ... ∩ w(ik)
(intersected cutoff window),

• x 	 y =

{
x− y if |x− y| ≤ dim

2
sgn(y − x) · x ◦ y otherwise

(periodic difference)

• u ≤r v when u	 r ≤ v	 r in lexicographic manner.

Figure 5 illustrates a simplified example of 7×7 processors
in a 2-dimensional problem space. The cutoff window for
proc(1,1) is shown in light blue. Indices in the pictures are
relative coordinates compared to the point (1, 1) using the 	
operator. In other words, the processor labeled (0, 0) is actually
processor (1, 1).

The algorithm is just a parallelization of the nested for
loops in sequential k-body computation. Each procr computes
the rth iteration of the outermost loop which has exactly p
iterations. It simply loops through boxes i2 in its cutoff range
from r to the end of the cutoff window, then loops through
boxes i3 in the intersected cutoff range of i2 and r from i2
to the end of the intersected cutoff window, and so on for k
levels. Algorithm 5 shows the full pseudocode.

A. Correctness

Why does the algorithm not cause redundancy here? Is it
correct? This section provides a formal proof that it generates
all necessary triplets and creates no redundancy.

Lemma 5.1: All triplets that need to be interacted can be
written as (i1:k), where i1 ≤i1 i2 ≤i1 . . . ≤i1 ik, when the
cutoff range spans less than 1/3 of the simulation space width.



Algorithm 5 PARALLEL K-BODY CUTOFF ALGORITHM

1: Input My rank r ∈ U3

2: Input Pr with all forces reset to 0.
3: Output Particles updated in-place.
4: for i2 ∈ w(r), r ≤r i2 do
5: . . .
6: for ik ∈ w(r, i2:k−1), ik−1 ≤r ik do
7: Interact my particles with particles from i2:k
8: end for
9: . . .

10: end for
11: Update my particles

Proof: Determining a sequence’s starting point and order
is a little tricky in a periodic boundary space. Sometimes such
an order above does not exist, such as Figure 6, for example.
The problem space is 1-dimensional and there are 6 processors
forming a ring. The cutoff distance spans 2 processors. The
cutoff windows of proc0, proc2, and proc4 are shown in
red dashed, green solid, and blue dotted frames, respectively.
Assume, without losing generality, that we are computing 3-
body interactions. Observe that the triplet (0, 2, 4) cannot be
written in any way that satisfies the inequality. It can not
be (0, 2, 4) and (0, 4, 2) because 4 <0 0. (2, 0, 4), (2, 4, 0),
(4, 0, 2), and (4, 2, 0) are also invalid in the same manners
(0 <2 2 and 2 <4 4).

This is because the triplet wraps around the simulation
space. In other words, let procb be any processor in the cutoff
range of proca, the maximum width of the union of the cutoff
windows of proca and procb exceeds dim, i.e., (2bc+1)+bc >
dim. (2bc + 1 for the cutoff window of proca. procb being at
one end of the cutoff window of proca will give maximum
(union) cutoff extension of bc.) To find out the case this does
not occur, we solve for bc in

(2bc + 1) + bc ≤ dim
3bc < dim (bc, dim ∈ Z)

bc < dim/3, (10)

which is our initial assumption. This completes the proof.

Lemma 5.2: Algorithm 5 computes all necessary k-tuples.

Proof: The set of k-tuples that procr computes is

Qr = {(r, i2:k) ∈ w(r)k | (r, i2:k) ∈ w(r, i2:k)k and
r ≤r i2 ≤r . . . ≤r ik}. (11)

4 5 0 1 2 3 4 5 0 

Fig. 6: A 1-dimensional problem space with 6 processors and
the cutoff distance bc = 2. The red dashed, green solid, and
blue dotted frames illustrate the cutoff windows of proc0,
proc2, and proc4, respectively.

According to Lemma 5.1, the set of all unique k-tuples procr
needs can be written as

Rr = {(i1:k) ∈ Uk | (i1:k) ∈ w(i1:k)k and ij = r, ∃j
and i1 ≤i1 i2 ≤i1 . . . ≤i1 ik}. (12)

Since Rr ⊆
⋃
i∈U

Qi, Algorithm 5 computes all necessary k-

tuples interactions for any procr.

Lemma 5.3: u	 v = −(v 	 u)

Proof: We first prove the point for the scalar version of
the operation: x 	 y = −(y 	 x). There are two cases. If x
and y are less than half the simulation box width apart, x	 y
is simply x− y and thus

x	 y = x− y = −(y − x) = −(y 	 x).

When x	 y = sgn(y − x) · x ◦ y, we have

x	 y = sgn(y − x) · x ◦ y
= −sgn(x− y) · y ◦ x (x ◦ y = y ◦ x)

= −(y 	 x)

as well. Therefore, x	y = −(y	x). Since the vector version
of 	 is just element-wise scalar operations, it follows that
u	 v = −(v 	 u).

Lemma 5.4: No two processors compute the same k-tuples
interactions.

Proof: Suppose the hypothesis is false and two processors
of rank u and v work on the same k-tuples. Because indices
are sorted lexicographically, the tuples have to be of form
(u, i2:k) and (v, j2:k). Since u 6= v, the elements in both
tuples must be in different orders. Let u = ja and v = ib. They
have to satisfy these following relative orders within tuple,

u ≤u i2 ≤u . . . ≤u ib = v ≤u . . . ≤u ik (13)
v ≤v j2 ≤v . . . ≤v ja = u ≤v . . . ≤v jk (14)

From (13), u ≤u v,

(0,0,0) = u	 u ≤ v 	 u (by definition) (15)

and from (14), v ≤v u,

(0,0,0) = v 	 v ≤ u	 v (by definition). (16)

Combining Lemma 5.3 with inequalities (15) and (16), we get

(0,0,0) ≤ u	 v ≤ (0,0,0). (17)

The only solution to inequality (17) is u 	 v = (0,0,0),
which only happens when u = v. This contradicts with the
assumption that u 6= v in the setup and hence the hypothesis
has to be true.

We now conclude that Algorithm 5 operates correctly.

B. Computation Optimality

Again, we are looking for two kinds of optimality: no
redundant work and ensuring load balance. Lemma 5.4 states
that no k-tuple is computed twice and thus proves the first
property. The load balance depends on particle distribution. If
particles are uniformly distributed, all processors will compute
equal number of interactions every round and the load is
balanced. Otherwise, there will be load imbalance.



C. Communication Optimality

Here we derive the communication lower bounds for the
uniformly-distributed cutoff case. For a d-dimensional problem
space, let f be the ratio of the cutoff window volume to the
problem space volume,

f =

(
2bc + 1

dim

)d

.

This means there are about fn particles in a particle’s cutoff
volume. The total work is O

(
n · (fn)k−1

)
and thus each

processor has work Z = O(fk−1nk/p). Let us continue to
write M , the number of particles per processor, as cn/p. The
maximum useful work a processor can do with M particles in
memory is O(Mk), therefore, F = cknk/pk. Substitute this
into equation (2), we get the general communication lower
bounds for k-body problem,

S = Ω

(
fk−1pk−1

ck

)
, W = Ω

(
nfk−1pk−2

ck−1

)
. (18)

For example, let f = 1.0, k = 3 and we get the same lower
bounds as in equation (4). The case where f = 1.0, k = 2 also
matches the 2-body communication lower bounds previously
derived in [25].

Now let us analyze the communication costs of Algo-
rithm 5. Since particles are distributed evenly and processors
are responsible of equal domain size, there are roughly fp
processor cells within a processor’s cutoff volume and O(fp)
rounds are required to go through all of them. With k-way
interaction, a processor needs to loop through all cells in range
for k−1 levels, totaling of O

(
(fp)k−1

)
rounds. In most rounds

it sends only a message, except when the cells in upper levels
also change, where it will send up to k messages per round.
The program stores n/p particles in memory. Therefore, the
total communication costs are,

S = O
(
kfk−1pk−1

)
, W = O

(
knfk−1pk−2

)
,

which are optimal if we consider k constant (c = 1).

Note that the costs of the all-triplet algorithms derived
earlier did not have the k factor. This is because shifting is
arranged in such a way that exactly one message is sent per
round. We can try this optimization with the cutoff algorithm
as well by mimicking Gray code generation, although special
care has to be taken because different levels have different
bounds. For example, consider 1-dimensional 3-body interac-
tions for proc0 with rc spanning 3 processor cells (p ≥ 10).
Algorithm 5 will process particle subset triplets in this order:
000, 001, 002, 003, 011, 012, 013, 022, 023. A better schedule
would be: 000, 001, 002, 003, 013, 011, 012, 022, 023. Notice
the jump from 013 to 011 before going back to 012. Had it
been 013, 012, 011, more than one message would be required
to go to the next particle subset triplet. The communication
costs for the modified schedule are

S = O
(
fk−1pk−1

)
, W = O

(
nfk−1pk−2

)
,

which are optimal regardless of k (with c = 1).

D. Communication-Avoiding Algorithm

A communication-avoiding algorithm can be derived the
same way as in the all-triplets section. In brief, we divide
processors into p/c teams with c team members each. Each
team owns cn/p particles. All processors in a team cooperate
to compute interactions for the particle subset their team owns.
Work should be partitioned in a way that each processor
calculates close to 1/c of all interactions of the subset. Finally,
processors participate in a team sum-reduce to merge all
interactions together, then update the particles. Due to the lack
of space, we will only prove its communication optimality.

Assume once again that particles are uniformly distributed
and let f be the ratio of the cutoff volume to the problem
space volume. There are p/c teams, each has to interact
with approximately O(fp/c) particle parts from other teams.
O
(
(fp/c)k−1

)
rounds of interactions are required in k-way

interactions. If the work is partitioned perfectly, a processor
has to compute O

(
(fp/c)k−1/c

)
rounds. Assuming optimal

shifting schedule (1 message per round) is used, the total
communication costs are

S = O

(
fk−1pk−1

ck

)
, W = O

(
nfk−1pk−2

ck−1

)
,

matching the communication lower bounds. The limit on c is
c ≤ f k−1

k p
k−1
k . The memory-independent bounds are

S = O (1) , W = O
(
nf

k−1
k p−

1
k

)
.

VI. CONCLUSION

We presented a direct long-range 3-body algorithm and
proved that it is both computation and communication optimal.
We also provided a communication-avoiding version that, by
making c replicas, decreases the total number of messages and
bandwidth usage by c3 and c2, respectively.

The communication-avoiding algorithm introduces some
load imbalance, but it is predictable based on a given replica-
tion factor, c, and grows with increasing values of c. Thus,
there is a tradeoff between reducing shifting time through
bandwidth and latency reductions and increasing idle time.
Since we know the amount of load imbalance for each c
ahead of time and the increase in reduction time is insignificant
compared to shifting time, we suggest picking large c’s with
reasonably small load imbalance.

Large scale experimental results on up to 16K cores
on Blue Gene/Q and 24K cores on Cray XC30 were
consistent with the communication costs predicted for the
communication-avoiding algorithm and also exhibited strong
scalability. The algorithm experienced up to 99.98% reduction
in communication time and 41.85× speedup, enabling strong
scaling up to 99% efficiency.

Finally, we presented a generalized algorithm that supports
k-body computations with a large cutoff distance that limits
interactions to 1/3 of the total particles. We derived the
communication lower bounds for this k-body algorithm and
showed that it is also both computation and communication
optimal. A specific piece of future work is to implement
of this algorithm with cutoff and then compare it to the
algorithm without cutoff for both accuracy and performance



in the context of a real application scenarios such as water
simulation.

We believe that our algorithmic framework, which repre-
sents a class of algorithms for various values of k and varying
amounts of memory for replication is flexible enough to be
useful in multiple application settings. The algorithms were
provably optimal in communication and computation, and had
bounded load imbalance. Overall, this work has shown the
importance of both communication avoidance and computation
avoidance for scalable k-body algorithms in both a theoretical
and experimental setup.
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